Starting from the Ginzburg-Landau free energy describing the normal state to Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) state transition, we evaluate the free energy of seven most common lattice structures such as stripe, square, triangular,Simple Cubic (SC), Face centered Cubic (FCC),Body centered Cubic (BCC) and Quasi-crystal (QC). We find that the stripe phase which is the original LO state, is the most stable phase. This result maybe relevant to the detection of LOFF state in some heavy fermion compounds and the pairing lattice structure of fermions with unequal populations in the BCS side of Feshbach resonance in ultra-cold atoms.