Homotopy groups of Hom complexes of graphs


الملخص بالإنكليزية

The notion of $times$-homotopy from cite{DocHom} is investigated in the context of the category of pointed graphs. The main result is a long exact sequence that relates the higher homotopy groups of the space $Hom_*(G,H)$ with the homotopy groups of $Hom_*(G,H^I)$. Here $Hom_*(G,H)$ is a space which parametrizes pointed graph maps from $G$ to $H$ (a pointed version of the usual $Hom$ complex), and $H^I$ is the graph of based paths in $H$. As a corollary it is shown that $pi_i big(Hom_*(G,H) big) cong [G,Omega^i H]_{times}$, where $Omega H$ is the graph of based closed paths in $H$ and $[G,K]_{times}$ is the set of $times$-homotopy classes of pointed graph maps from $G$ to $K$. This is similar in spirit to the results of cite{BBLL}, where the authors seek a space whose homotopy groups encode a similarly defined homotopy theory for graphs. The categorical connections to those constructions are discussed.

تحميل البحث