The successful anthropic prediction of the cosmological constant depends crucially on the assumption of a flat prior distribution. However, previous calculations in simplified landscape models showed that the prior distribution is staggered, suggesting a conflict with anthropic predictions. Here we analytically calculate the full distribution, including the prior and anthropic selection effects, in a toy landscape model with a realistic number of vacua, $N sim 10^{500}$. We show that it is possible for the fractal prior distribution we find to behave as an effectively flat distribution in a wide class of landscapes, depending on the regime of parameter space. Whether or not this possibility is realized depends on presently unknown details of the landscape.