Effects of dissipation on a quantum critical point with disorder


الملخص بالإنكليزية

We study the effects of dissipation on a disordered quantum phase transition with O$(N)$ order parameter symmetry by applying a strong-disorder renormalization group to the Landau-Ginzburg-Wilson field theory of the problem. We find that Ohmic dissipation results in a non-perturbative infinite-randomness critical point with unconventional activated dynamical scaling while superohmic damping leads to conventional behavior. We discuss applications to the superconductor-metal transition in nanowires and to Hertz theory of the itinerant antiferromagnetic transition.

تحميل البحث