Is relaxation correlated in superconducting qubits?


الملخص بالإنكليزية

We consider coupled quantum two-state systems (qubits) exposed to a global relaxation process. The global relaxation refers to the assumption that qubits are coupled to the same quantum bath with approximately equal strengths, appropriate for long-wavelength environmental fluctuations. We show that interactions do not spoil the picture of Dickes subradiant and superradiant states where quantum interference effects lead to striking deviations from the independent relaxation picture. Remarkably, the system possess a stable entangled state and a state decaying faster than single qubit excitations. We propose a scheme how these effects can be experimentally accessed in superconducting flux qubits and, possibly, used in constructing long-lived entangled states.

تحميل البحث