A simple stochastic formulation of the multiple scattering representation solution of the classical linear incoherent trapping problem is presented for a broad audience. A clear connection with the alternative Holsteins solution ansatz is emphasized by the (re)interpretation of the fundamental mode as the one associated with a relaxed nonchanging spatial distribution of excitation. Expressions for overall relaxation parameters (ensemble emission yield and lifetime) as well as time-resolved (decay and spatial distribution) and steady-state quantities (spectra and spatial distribution) are given with the fundamental mode contribution singled out. The multiple scattering representation is advocated for final undergraduate and beginning graduate physics instruction based on physical insight and computation feasibility. This will be illustrated in the following instalment of this contribution.