ﻻ يوجد ملخص باللغة العربية
We construct a Teichmueller curve uniformized by the Fuchsian triangle group (m,n,infty) for every m<n. Our construction includes the Teichmueller curves constructed by Veech and Ward as special cases. The construction essentially relies on properties of hypergeometric differential operators. For small m, we find Billiard tables that generate these Teichmueller curves. We interprete some of the so-called Lyapunov exponents of the Kontsevich--Zorich cocycle as normalized degrees of some natural line bundles on a Teichmueller curves. We determine the Lyapunov exponents for the Teichmueller curves we construct.
In this note we show that the results of H. Furstenberg on the Poisson boundary of lattices of semisimple Lie groups allow to deduce simplicity properties of the Lyapunov spectrum of the Kontsevich-Zorich cocycle of Teichmueller curves in moduli spac
We prove that the moduli space of compact genus three Riemann surfaces contains only finitely many algebraically primitive Teichmueller curves. For the stratum consisting of holomorphic one-forms in genus three with a single zero, our approach to fin
We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can
We investigate the Lyapunov Exponents of a variation of Hodge structure which has $G_2$ as geometric monodromy group, and discuss formulas for the sum of positive Lyapunov Exponents of variations of Hodge structures of any weight.
Answering a question asked by Agol and Wise, we show that a desired stronger form of Wises malnormal special quotient theorem does not hold. The counterexamples are generalizations of triangle groups, built using the Ramanujan graphs constructed by Lubotzky--Phillips--Sarnak.