ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Aspects of Deformation Defects in Bulk Metallic Glasses

79   0   0.0 ( 0 )
 نشر من قبل Yang Tong
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yang Tong




اسأل ChatGPT حول البحث

Mechanical behaviors of bulk metallic glasses (BMGs) including heterogeneous and homogeneous deformation are interpreted by phenomenological shear transformation zones (STZs) model. Currently, information about STZs, i.e. size and density, is only extracted by fitting model equation to the data obtained from macroscopic mechanical tests. This is inadequate since structural features of STZs theory cannot be assessed. Here, we develop anisotropic pair distribution function (PDF) method for directly characterizing mechanical response of deformation defects. Our results reveal the physical picture of deformation defects in BMGs and also provide direct experimental observation of a link between mechanical deformation and intrinsic properties of deformation defects in BMGs.



قيم البحث

اقرأ أيضاً

The atomic theory of elasticity of amorphous solids, based on the nonaffine response formalism, is extended into the nonlinear stress-strain regime by coupling with the underlying irreversible many-body dynamics. The latter is implemented in compact analytical form using a qualitative method for the many-body Smoluchowski equation. The resulting nonlinear stress-strain (constitutive) relation is very simple, with few fitting parameters, yet contains all the microscopic physics. The theory is successfully tested against experimental data on metallic glasses, and it is able to reproduce the ubiquitous feature of stress-strain overshoot upon varying temperature and shear rate. A clear atomic-level interpretation is provided for the stress overshoot, in terms of the competition between the elastic instability caused by nonaffine deformation of the glassy cage and the stress buildup due to viscous dissipation.
The bulk and surface dynamics of Cu50Zr50 metallic glass were studied using classical molecular dynamics (MD) simulations. As the alloy undergoes cooling, it passes through liquid, supercooled, and glassy states. While bulk dynamics showed a marked s lowing down prior to glass formation, with increasing activation energy, the slowdown in surface dynamics was relatively subtle. The surface exhibited a lower glass transition temperature than the bulk, and the dynamics preceding the transition were accurately described by a temperature-independent activation energy. Surface dynamics were much faster than bulk at a given temperature in the supercooled state, but surface and bulk dynamics were found to be very similar when compared at their respective glass transition temperatures. The manifestation of dynamical heterogeneity, as characterized by the non-Gaussian parameter and breakdown of the Stokes-Einstein equation, was also similar between bulk and surface for temperatures scaled by their respective glass transition temperatures. Individual atom motion was dominated by a cage and jump mechanism in the glassy state for both the bulk and surface. We utilize this cage and jump mechanisms to separate the activation energy for diffusion into two parts: (i) cage-breaking barrier (Q1), associated with the rearrangement of neighboring atoms to free up space and (ii) the subsequent jump barrier (Q2). It was observed that Q1 dominates Q2 for both bulk and surface diffusion, and the difference in activation energies for bulk and surface diffusion mainly arose from the differences in cage-breaking barrier Q1.
Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new sys tems is still performed by trial and error. It has been speculated that some sort of confusion during crystallization of the crystalline phases competing with glass formation could play a key role. Here, we propose a heuristic descriptor quantifying confusion and demonstrate its validity by detailed experiments on two well-known glass forming alloy systems. With the insight provided by these results, we develop a robust model for predicting glass formation ability based on the spectral decomposition of geometrical and energetic features of crystalline phases calculated ab-initio in the AFLOW high throughput framework. Our findings indicate that the formation of metallic glass phases could be a much more common phenomenon than currently estimated, with more than 17% of binary alloy systems being potential glass formers. Our approach is capable of pinpointing favorable compositions, overcoming a major bottleneck hindering the discovery of new materials. Hence, it is demonstrated that smart descriptors, based solely on the energetics and structure of competing crystalline phases calculated from first-principles and available in online databases, others the sought-after key for accelerated discovery of novel metallic glasses.
Inelastic deformation of metallic glasses occurs via slip events with avalanche dynamics similar to those of earthquakes. For the first time in these materials, measurements have been obtained with sufficiently high temporal resolution to extract bot h the exponents and the scaling functions that describe the nature, statistics and dynamics of the slips according to a simple mean-field model. These slips originate from localized deformation in shear bands. The mean-field model describes the slip process as an avalanche of rearrangements of atoms in shear transformation zones (STZs). Small slips show the predicted power-law scaling and correspond to limited propagation of a shear front, while large slips are associated with uniform shear on unconstrained shear bands. The agreement between the model and data across multiple independent measures of slip statistics and dynamics provides compelling evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.
Bulk MgB2 samples were prepared under different synthesis conditions and analyzed by scanning and transmission electron microscopy. The critical current densities were determined from the magnetization versus magnetic field curves of bulk and powder- dispersed-in-epoxy samples. Results show that through a slow cooling process, the oxygen dissolved in bulk MgB2 at high synthesis temperatures can segregate and form nanometer-sized coherent precipitates of Mg(B,O)2 in the MgB2 matrix. Magnetization measurements indicate that these precipitates act as effective flux pinning centers and therefore significantly improve the intra-grain critical current density and its field dependence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا