ﻻ يوجد ملخص باللغة العربية
The bulk and surface dynamics of Cu50Zr50 metallic glass were studied using classical molecular dynamics (MD) simulations. As the alloy undergoes cooling, it passes through liquid, supercooled, and glassy states. While bulk dynamics showed a marked slowing down prior to glass formation, with increasing activation energy, the slowdown in surface dynamics was relatively subtle. The surface exhibited a lower glass transition temperature than the bulk, and the dynamics preceding the transition were accurately described by a temperature-independent activation energy. Surface dynamics were much faster than bulk at a given temperature in the supercooled state, but surface and bulk dynamics were found to be very similar when compared at their respective glass transition temperatures. The manifestation of dynamical heterogeneity, as characterized by the non-Gaussian parameter and breakdown of the Stokes-Einstein equation, was also similar between bulk and surface for temperatures scaled by their respective glass transition temperatures. Individual atom motion was dominated by a cage and jump mechanism in the glassy state for both the bulk and surface. We utilize this cage and jump mechanisms to separate the activation energy for diffusion into two parts: (i) cage-breaking barrier (Q1), associated with the rearrangement of neighboring atoms to free up space and (ii) the subsequent jump barrier (Q2). It was observed that Q1 dominates Q2 for both bulk and surface diffusion, and the difference in activation energies for bulk and surface diffusion mainly arose from the differences in cage-breaking barrier Q1.
The enhancement of surface diffusion (DS) over the bulk (DV) in metallic glasses (MGs) is well documented and likely to strongly influence the properties of glasses grown by vapor deposition. Here, we use classical molecular dynamics simulations to i
Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new sys
Mechanical behaviors of bulk metallic glasses (BMGs) including heterogeneous and homogeneous deformation are interpreted by phenomenological shear transformation zones (STZs) model. Currently, information about STZs, i.e. size and density, is only ex
In this work we study the diffusion mechanisms in lithium disilicate melt using molecular dynamics simulation, which has an edge over other simulation methods because it can track down actual atomic rearrangements in materials once a realistic intera
We develop a Python-based open-source package to analyze the results stemming from ab initio molecular-dynamics simulations of fluids. The package is best suited for applications on natural systems, like silicate and oxide melts, water-based fluids,