ﻻ يوجد ملخص باللغة العربية
Loebl, Komlos and Sos conjectured that every $n$-vertex graph $G$ with at least $n/2$ vertices of degree at least $k$ contains each tree $T$ of order $k+1$ as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of $k$. For our proof, we use a structural decomposition which can be seen as an analogue of Szemeredis regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of $G$ to embed a given tree $T$. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050].
In a series of four papers we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+alpha)n$ vertices of degree
This is the third of a series of four papers in which we prove the following relaxation of the Loebl-Komlos-Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac12+
This is the second of a series of four papers in which we prove the following relaxation of the Loebl-Komlos--Sos Conjecture: For every $alpha>0$ there exists a number $k_0$ such that for every $k>k_0$ every $n$-vertex graph $G$ with at least $(frac1
We prove a version of the Loebl-Komlos-Sos Conjecture for dense graphs. For each q>0 there exists a number $n_0in mathbb{N}$ such that for any n>n_0 and k>qn the following holds: if G be a graph of order n with at least n/2 vertices of degree at leas
Loebl, Komlos, and Sos conjectured that any graph with at least half of its vertices of degree at least k contains every tree with at most k edges. We propose a version of this conjecture for skewed trees, i.e., we consider the class of trees with at