ﻻ يوجد ملخص باللغة العربية
We introduce a new sufficient statistic for the population parameter vector by allowing for the sampling design to first be selected at random amongst a set of candidate sampling designs. In contrast to the traditional approach in survey sampling, we achieve this by defining the observed data to include a mention of the sampling design used for the data collection aspect of the study. We show that the reduced data consisting of the unit labels together with their corresponding responses of interest is a sufficient statistic under this setup. A Rao-Blackwellization inference procedure is outlined and it is shown how averaging over hypothetical observed data outcomes results in improved estimators; the improved strategy includes considering all possible sampling designs in the candidate set that could have given rise to the reduced data. Expressions for the variance of the Rao-Blackwell estimators are also derived. The results from two simulation studies are presented to demonstrate the practicality of our approach. A discussion on how our approach can be useful when the analyst has limited information on the data collection procedure is also provided.
The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many f
The plurigaussian model is particularly suited to describe categorical regionalized variables. Starting from a simple principle, the thresh-olding of one or several Gaussian random fields (GRFs) to obtain categories, the plurigaussian model is well a
In prevalent cohort studies where subjects are recruited at a cross-section, the time to an event may be subject to length-biased sampling, with the observed data being either the forward recurrence time, or the backward recurrence time, or their sum
We present an elementary mathematical method to find the minimax estimator of the Bernoulli proportion $theta$ under the squared error loss when $theta$ belongs to the restricted parameter space of the form $Omega = [0, eta]$ for some pre-specified c
The cross-classified sampling design consists in drawing samples from a two-dimension population, independently in each dimension. Such design is commonly used in consumer price index surveys and has been recently applied to draw a sample of babies i