ترغب بنشر مسار تعليمي؟ اضغط هنا

A Broadened Approach for Improved Estimation in Survey Sampling

256   0   0.0 ( 0 )
 نشر من قبل Kyle Vincent Ph. D
 تاريخ النشر 2014
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new sufficient statistic for the population parameter vector by allowing for the sampling design to first be selected at random amongst a set of candidate sampling designs. In contrast to the traditional approach in survey sampling, we achieve this by defining the observed data to include a mention of the sampling design used for the data collection aspect of the study. We show that the reduced data consisting of the unit labels together with their corresponding responses of interest is a sufficient statistic under this setup. A Rao-Blackwellization inference procedure is outlined and it is shown how averaging over hypothetical observed data outcomes results in improved estimators; the improved strategy includes considering all possible sampling designs in the candidate set that could have given rise to the reduced data. Expressions for the variance of the Rao-Blackwell estimators are also derived. The results from two simulation studies are presented to demonstrate the practicality of our approach. A discussion on how our approach can be useful when the analyst has limited information on the data collection procedure is also provided.



قيم البحث

اقرأ أيضاً

The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many f requently used models are special cases of this general formulation, namely: errors-in-variables models, nonlinear mixed-effects models, heteroscedastic nonlinear models, among others. In any of these models, the vector of the errors may have any multivariate elliptical distribution. We obtain the second-order bias of the maximum likelihood estimator, a bias-corrected estimator, and a bias-reduced estimator. Simulation results indicate the effectiveness of the bias correction and bias reduction schemes.
The plurigaussian model is particularly suited to describe categorical regionalized variables. Starting from a simple principle, the thresh-olding of one or several Gaussian random fields (GRFs) to obtain categories, the plurigaussian model is well a dapted for a wide range ofsituations. By acting on the form of the thresholding rule and/or the threshold values (which can vary along space) and the variograms ofthe underlying GRFs, one can generate many spatial configurations for the categorical variables. One difficulty is to choose variogrammodel for the underlying GRFs. Indeed, these latter are hidden by the truncation and we only observe the simple and cross-variogramsof the category indicators. In this paper, we propose a semiparametric method based on the pairwise likelihood to estimate the empiricalvariogram of the GRFs. It provides an exploratory tool in order to choose a suitable model for each GRF and later to estimate its param-eters. We illustrate the efficiency of the method with a Monte-Carlo simulation study .The method presented in this paper is implemented in the R packageRGeostats.
113 - Pourab Roy , Jason P. Fine , 2019
In prevalent cohort studies where subjects are recruited at a cross-section, the time to an event may be subject to length-biased sampling, with the observed data being either the forward recurrence time, or the backward recurrence time, or their sum . In the regression setting, it has been shown that the accelerated failure time model for the underlying event time is invariant under these observed data set-ups and can be fitted using standard methodology for accelerated failure time model estimation, ignoring the length-bias. However, the efficiency of these estimators is unclear, owing to the fact that the observed covariate distribution, which is also length-biased, may contain information about the regression parameter in the accelerated life model. We demonstrate that if the true covariate distribution is completely unspecified, then the naive estimator based on the conditional likelihood given the covariates is fully efficient.
74 - Heejune Sheen , Yajun Mei 2020
We present an elementary mathematical method to find the minimax estimator of the Bernoulli proportion $theta$ under the squared error loss when $theta$ belongs to the restricted parameter space of the form $Omega = [0, eta]$ for some pre-specified c onstant $0 leq eta leq 1$. This problem is inspired from the problem of estimating the rate of positive COVID-19 tests. The presented results and applications would be useful materials for both instructors and students when teaching point estimation in statistical or machine learning courses.
The cross-classified sampling design consists in drawing samples from a two-dimension population, independently in each dimension. Such design is commonly used in consumer price index surveys and has been recently applied to draw a sample of babies i n the French ELFE survey, by crossing a sample of maternity units and a sample of days. We propose to derive a general theory of estimation for this sampling design. We consider the Horvitz-Thompson estimator for a total, and show that the cross-classified design will usually result in a loss of efficiency as compared to the widespread two-stage design. We obtain the asymptotic distribution of the Horvitz-Thompson estimator, and several unbiased variance estimators. Facing the problem of possibly negative values, we propose simplified non-negative variance estimators and study their bias under a super-population model. The proposed estimators are compared for totals and ratios on simulated data. An application on real data from the ELFE survey is also presented, and we make some recommendations. Supplementary materials are available online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا