ﻻ يوجد ملخص باللغة العربية
We calculate the temperature dependence of the correlation length xi and the uniform susceptibility chi_0 of the frustrated J1-J2 square-lattice Heisenberg ferromagnet in the collinear stripe phase using Green-function technique. The height chi_{max} and the position T(chi_{max}) of the maximum in the chi_0(T) curve exhibit a characteristic dependence on the frustration parameter J2/|J1|, which is well described by power laws, chi_{max}=a(J2-J2^c)^{-nu} and T(chi_{max})=b(J_2-J_2^c), where J2^c = 0.4 and nu is of the order of unity.The correlation length diverges at low temperatures as xi propto e^{A/T}, where A increases with growing J2/|J1|. We also compare our results with recent measurements on layered vanadium phosphates and find reasonable agreement.
We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J3 on the ground state of the spin-1/2 Heisenberg chain with ferromagnetic nea
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength
We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antif
The correlated spin dynamics and the temperature dependence of the correlation length $xi(T)$ in two-dimensional quantum ($S=1/2$) Heisenberg antiferromagnets (2DQHAF) on square lattice are discussed in the light of experimental results of proton spi
Searching for spin liquids on the honeycomb J1-J2 Heisenberg model has been attracting great attention in the past decade. In this Paper we investigate the topological properties of the J1-J2 Heisenberg model by introducing nearest-neighbour and next