ﻻ يوجد ملخص باللغة العربية
Searching for spin liquids on the honeycomb J1-J2 Heisenberg model has been attracting great attention in the past decade. In this Paper we investigate the topological properties of the J1-J2 Heisenberg model by introducing nearest-neighbour and next-nearest-neighbour bond parameters. We find that there exist two topologically different phases in the spin disordered regime 0.2<J2/J1<0.5: for J2/J1<0.32, the system is a zero-flux spin liquid which is topological trivial and gapless; for J2/J1>0.32, it is a pi-flux chiral spin liquid, which is topological nontrivial and gapped. These results suggest that there exist two topologically different spin disorder phases in honeycomb J1-J2 Heisenberg model.
We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antif
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength
Based on the mapping between $s=1/2$ spin operators and hard-core bosons, we extend the cluster perturbation theory to spin systems and study the whole excitation spectrum of the antiferromagnetic $J_{1}$-$J_{2}$ Heisenberg model on the square lattic
We study the plaquette valence-bond solid phase of the spin-1/2 J_1-J_2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S = 1/2 spins on a single plaquette and determine the bond op
We study the spin-1/2 Heisenberg model on the square lattice with first- and second-neighbor antiferromagnetic interactions J1 and J2, which possesses a nonmagnetic region that has been debated for many years and might realize the interesting Z2 spin