ﻻ يوجد ملخص باللغة العربية
An experiment using the 11B(3He,d)12C reaction was performed at iThemba LABS at an incident energy of 44 MeV and analyzed with a high energy-resolution magnetic spectrometer, to re-investigate states in 12C published in 1971. The original investigation reported the existence of an 11.16 MeV state in 12C that displays a 2+ nature. In the present experiment data were acquired at laboratory angles of 25-, 30- and 35- degrees, to be as close to the c.m. angles of the original measurements where the clearest signature of such a state was observed. These new low background measurements revealed no evidence of the previously reported state at 11.16 MeV in 12C.
The 16.1MeV 2+ resonance in 12C situated slightly above the proton threshold can decay by proton-, $alpha$-, and $gamma$ emission. The partial width for proton emission cannot be directly measured due to the low proton energy and the small branching
Dissipative 12C+12C reactions at 95 MeV are fully detected in charge with the GARFIELD and RCo apparatuses at LNL. A comparison to a dedicated Hauser-Feshbach calculation allows to select events which correspond, to a large extent, to the statistical
Inelastic $alpha$ scattering on 16O is studied at 400 MeV by using an ice target. Near the 4-alpha breakup threshold of 14.4 MeV, a broad peak is observed at an excitation energy of 13.6+/-0.2 MeV with a width of 0.6+/-0.2 MeV. The spin-parity is est
We report a measurement of a new high spin Jp = 5- state at 22.4(0.2) MeV in 12C which fits very well to the predicted (ground state) rotational band of an oblate equilateral triangular spinning top with a D_3h symmetry characterized by the sequence
The population of the 9.50 MeV 9/2+ resonance in 13C by single neutron transfer reactions is expected to be dominated by the two-step route through the 12C 2+ (4.44 MeV) state, with another possible contribution via the strongly excited 3- (9.64 MeV)