ترغب بنشر مسار تعليمي؟ اضغط هنا

alpha-clustering effects in dissipative 12C+12C reactions at 95 MeV

129   0   0.0 ( 0 )
 نشر من قبل Giorgio Baiocco
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Dissipative 12C+12C reactions at 95 MeV are fully detected in charge with the GARFIELD and RCo apparatuses at LNL. A comparison to a dedicated Hauser-Feshbach calculation allows to select events which correspond, to a large extent, to the statistical evaporation of highly excited 24Mg, as well as to extract information on the isotopic distribution of the evaporation residues in coincidence with their complete evaporation chain. Residual deviations from a statistical behaviour are observed in alpha yields and attributed to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay.



قيم البحث

اقرأ أيضاً

An experimental campaign has been undertaken at INFN Laboratori Nazionali di Legnaro, Italy, in order to progress in our understanding of the statistical properties of light nuclei at excitation energies above particle emission threshold, by measurin g exclusive data from fusion-evaporation reactions. A first reaction 12C+12C at 7.9 AMeV beam energy has been measured, using the GARFIELD+Ring Counter experimental setup. Fusion-evaporation events have been exclusively selected. The comparison to a dedicated Hauser-Feshbach calculation allows us to give constraints on the nuclear level density at high excitation energy for light systems ranging from C up to Mg. Out-of-equilibrium emission has been evidenced and attributed both to entrance channel effects favoured by the cluster nature of reaction partners and, in more dissipative events, to the persistence of cluster correlations well above the 24Mg threshold for 6 alphas decay. The 24Mg compound nucleus has been studied with a new measurement 14N + 10B at 5.7 AMeV. The comparison between the two datasets would allow us to further constrain the level density of light nuclei. Deviations from a statistical behaviour can be analyzed to get information on nuclear clustering.
During therapeutic treatments using ions such as carbon, nuclear interactions between the incident ions and nuclei present in organic tissues may occur, leading to the attenuation of the incident beam intensity and to the production of secondary ligh t charged particles. As the biological dose deposited in the tumor and the surrounding healthy tissues depends on the beam composition, an accurate knowledge of the fragmentation processes is thus essential. In particular, the nuclear interaction models have to be validated using experimental double differential cross sections which are still very scarce. An experiment was realized in 2011 at GANIL to obtain these cross sections for a 95 MeV/nucleon carbon beam on different thin targets for angles raging from 4 to 43{deg} . In order to complete these data, a new experiment was performed on September 2013 at GANIL to measure the fragmentation cross section at zero degree for a 95 MeV/nucleon carbon beam on thin targets. In this work, the experimental setup will be described, the analysis method detailed and the results presented.
117 - J. Dudouet 2013
During therapeutic treatment with heavier ions like carbon, the beam undergoes nuclear fragmentation and secondary light charged particles, in particular protons and alpha particles, are produced. To estimate the dose deposited into the tumors and th e surrounding healthy tissues, the accuracy must be higher than ($pm$3% and$pm$1 mm). Therefore, measurements are performed to determine the double differential cross section for different reactions. In this paper, the analysis of data from 12C +12C reactions at 95 MeV/u are presented. The emitted particles are detected with DeltaEthin-DeltaEthick-E telescopes made of a stack of two silicon detectors and a CsI crystal. Two different methods are used to identify the particles. One is based on graphical cuts onto the DeltaE-E maps, the second is based on the so-called KaliVeda method using a functional description of DeltaE versus E. The results of the two methods will be presented in this paper as well as the comparison between both.
67 - T.Spillane , F.Raiola , S.Zeng 2007
The fusion reactions 12C(12C,a)20Ne and 12C(12C,p)23Na have been studied from E = 2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultra-low hydrogen contamination. The deduced astrophysical S(E)* factor exhibits new resonances at E < = 3.0 MeV, in particular a strong resonance at E = 2.14 MeV, which lies at the high-energy tail of the Gamow peak. The resonance increases the present non-resonant reaction rate of the alpha channel by a factor of 5 near T = 8x10^8 K. Due to the resonance structure, extrapolation to the Gamow energy E_G = 1.5 MeV is quite uncertain. An experimental approach based on an underground accelerator placed in a salt mine in combination with a high efficiency detection setup could provide data over the full E_G energy range.
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$+$^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $alpha$-particle condensation. The methodology relies on high granularity 4$pi$ detection coupled t o correlation function techniques. Under the assumption that the equality among the kinetic energies of the emitted $alpha$-particles and the emission simultaneity constitutes a reliable fingerprint of $alpha$ condensation, we identify several tens of events corresponding to the deexcitation of the Hoyle state of $^{12}$C which fulfill the condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا