ترغب بنشر مسار تعليمي؟ اضغط هنا

Sculpting oscillators with light within a nonlinear quantum fluid

297   0   0.0 ( 0 )
 نشر من قبل Jeremy Baumberg
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into such quantum fluids producing rich physical phenomena as well as proven potential for interferometric devices [1-10]. However direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room temperature quantum states [11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualise the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially-separated pump spots. Although oscillating at tuneable THz-scale frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.



قيم البحث

اقرأ أيضاً

We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theor etical concept for a spectroscopic technique that consists in scanning the output of resonance fluorescence onto an optical target, from which weak nonlinearities can be read with high precision even in strongly dissipative environments.
We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low density regions containing density-phase singularities confined between high den sity regions. We show that in 1D channels, an odd (1-3) or even (2-4) number of dark solitons form parallel to the channel axis in order to accommodate the phase constraint induced by the pumps in the barriers. These soliton molecules are typically unstable and evolve toward stationary symmetric or anti-symmetric arrays of vortex streets straightforwardly observable in emph{cw} experiments. The flexibility of this photonic platform allows implementing more complicated potentials such as maze-like channels, with the vortex streets connecting the entrances and thus solving the maze.
135 - C. Anton , G. Tosi , M. D. Martin 2013
We show that the use of momentum-space optical interferometry, which avoids any spatial overlap between two parts of a macroscopic quantum state, presents a unique way to study coherence phenomena in polariton condensates. In this way, we address the longstanding question in quantum mechanics: emph{Do two components of a condensate, which have never seen each other, possess a definitive phase?} [P. W. Anderson, emph{Basic Notions of Condensed Matter Physics} (Benjamin, 1984)]. A positive answer to this question is experimentally obtained here for light-matter condensates, created under precise symmetry conditions, in semiconductor microcavities taking advantage of the direct relation between the angle of emission and the in-plane momentum of polaritons.
We investigate the ground state properties of a bosonic Harper-Hofstadter model with local interactions on a finite cylindrical lattice with filling fraction $ u=1/2$. We find that our system supports topologically ordered states by calculating the t opological entanglement entropy, and its value is in good agreement with the theoretical value for the $ u=1/2$ Laughlin state. By exploring the behaviour of the density profiles, edge currents and single-particle correlation functions, we find that the ground state on the cylinder shows all signatures of a fractional quantum Hall state even for large values of the magnetic flux density. Furthermore, we determine the dependence of the correlation functions and edge currents on the interaction strength. We find that depending on the magnetic flux density, the transition towards Laughlin-like behaviour can be either smooth or happens abruptly for some critical interaction strength.
We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the bottom of the lower polariton dispersion, the sign of the interaction-renormalised pump detuning classifies the collective excitation spectra in three different categories [C. Ciuti and I. Carusotto, physica status solidi (b) 242, 2224 (2005)]: linear for zero, diffusive-like for positive, and gapped for negative detuning. We show that both cases of zero and positive detuning share a qualitatively similar crossover of the drag force from the subsonic to the supersonic regime as a function of the fluid velocity, with a critical velocity given by the speed of sound found for the linear regime. In contrast, for gapped spectra, we find that the critical velocity exceeds the speed of sound. In all cases, the residual drag force in the subcritical regime depends on the polariton lifetime only. Also, well below the critical velocity, the drag force varies linearly with the polariton lifetime, in agreement with previous work [E. Cancellieri et al., Phys. Rev. B 82, 224512 (2010)], where the drag was determined numerically for a finite-size defect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا