ﻻ يوجد ملخص باللغة العربية
We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low density regions containing density-phase singularities confined between high density regions. We show that in 1D channels, an odd (1-3) or even (2-4) number of dark solitons form parallel to the channel axis in order to accommodate the phase constraint induced by the pumps in the barriers. These soliton molecules are typically unstable and evolve toward stationary symmetric or anti-symmetric arrays of vortex streets straightforwardly observable in emph{cw} experiments. The flexibility of this photonic platform allows implementing more complicated potentials such as maze-like channels, with the vortex streets connecting the entrances and thus solving the maze.
Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into such quantum fluids producing rich physical phenomena as well as proven potential for interferometric devices [1-10]. However direct i
We study the linear response of a coherently driven polariton fluid in the pump-only configuration scattering against a point-like defect and evaluate analytically the drag force exerted by the fluid on the defect. When the system is excited near the
We study transport of noninteracting fermions through a periodically driven quantum point contact (QPC) connecting two tight-binding chains. Initially, each chain is prepared in its own equilibrium state, generally with a bias in chemical potentials
We study driven-dissipative Bose-Einstein condensates in a two-mode Josephson system, such as a double-well potential, with asymmetrical pumping. We investigate nonlinear effects on the condensate populations and mode transitions. The generalized Gro
We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theor