ترغب بنشر مسار تعليمي؟ اضغط هنا

Interband Quasiparticle Scattering in Superconducting LiFeAs Reconciles Photoemission and Tunneling Measurements

149   0   0.0 ( 0 )
 نشر من قبل Christian Hess
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several angle resolved photoemission spectroscopy (ARPES) studies reveal a poorly nested Fermi surface of LiFeAs, far away from a spin density wave instability, and clear-cut superconducting gap anisotropies. On the other hand a very different, more nested Fermi surface and dissimilar gap anisotropies have been obtained from quasiparticle interference (QPI) data, which were interpreted as arising from intraband scattering within hole-like bands. Here we show that this ARPES-QPI paradox is completely resolved by interband scattering between the hole-like bands. The resolution follows from an excellent agreement between experimental quasiparticle scattering data and T-matrix QPI calculations (based on experimental band structure data), which allows disentangling interband and intraband scattering processes.



قيم البحث

اقرأ أيضاً

Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission (ARPES) data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference (QPI) to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015)]. We show that all features present for the simple two-band model for the sign-changing $s_{+-}$-wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs, and identify various features of these superconducting gaps functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs, due to the smallness of the pockets and the near proximity of two of the gap energies.
Quasiparticle interference (QPI) provides a wealth of information relating to the electronic structure of a material. However, it is often assumed that this information is constrained to two-dimensional electronic states. Here, we show that this is n ot necessarily the case. For FeSe, a system dominated by surface defects, we show that it is actually all electronic states with negligible group velocity in the $z$ axis that are contained within the experimental data. By using a three-dimensional tight binding model of FeSe, fit to photoemission measurements, we directly reproduce the experimental QPI scattering dispersion, within a T-matrix formalism, by including both $k_z = 0$ and $k_z = pi$ electronic states. This result unifies both tunnelling and photoemission based experiments on FeSe and highlights the importance of $k_z$ within surface sensitive measurements of QPI.
We apply the new-generation ARPES methodology to the most widely studied cuprate superconductor YBCO. Considering the nodal direction, we found noticeable renormalization effects known as kinks both in the quasiparticle dispersion and scattering rate , the bilayer splitting and evidence for strong interband scattering -- all the characteristic features of the nodal quasiparticles detected earlier in BSCCO. The typical energy scale and the doping dependence of the kinks clearly point to their intimate relation with the spin-1 resonance seen in the neutron scattering experiments. Our findings strongly suggest a universality of the electron dynamics in the bilayer superconducting cuprates and a dominating role of the spin-fluctuations in the formation of the quasiparticles along the nodal direction.
The cuprate high-temperature superconductors are known to host a wide array of effects due to interactions and disorder. In this work, we look at some of the consequences of these effects which can be visualized by scanning tunneling spectroscopy. Th ese interaction and disorder effects can be incorporated into a mean-field description by means of a self-energy appearing in the Greens function. We first examine the quasiparticle scattering interference spectra in the superconducting state at optimal doping as temperature is increased. Assuming agreement with angle-resolved photoemission experiments which suggest that the scattering rate depends on temperature, resulting in the filling of the $d$-wave gap, we find that the peaks predicted by the octet model become progressively smeared as temperature is increased. When the scattering rate is of the same order of magnitude as the superconducting gap, the spectral function shows Fermi-arc-like patterns, while the power spectrum of the local density of states shows the destruction of the octet-model peaks. We next consider the normal state properties of the optimally-doped cuprates. We model this by adding a marginal Fermi liquid self-energy to the normal-state propagator, and consider the dependence of the QPI spectra on frequency, temperature, and doping. We demonstrate that the MFL self-energy leads to a smearing of the caustics appearing in the normal-state QPI power spectrum as either temperature or frequency is increased at fixed doping. The smearing is found to be more prominent in the MFL case than in an ordinary Fermi liquid. We also consider the case of a marginal Fermi liquid with a strongly momentum-dependent self-energy which gives rise to a visible nodal-antinodal dichotomy at the normal state, and discuss how the spectra as seen in ARPES and STS differ from both an isotropic metal and a broadened $d$-wave superconductor.
We report superconducting (SC) properties of stoichiometric LiFeAs (Tc = 17 K) studied by small-angle neutron scattering (SANS) and angle-resolved photoemission (ARPES). Although the vortex lattice exhibits no long-range order, well-defined SANS rock ing curves indicate better ordering than in chemically doped 122-compounds. The London penetration depth of 210 nm, determined from the magnetic field dependence of the form factor, is compared to that calculated from the ARPES band structure with no adjustable parameters. Its temperature dependence is best described by a single isotropic SC gap of 3.0 meV, which agrees with the ARPES value of 3.1 meV and corresponds to the ratio 2Delta/kTc = 4.1, approaching the weak-coupling limit predicted by the BCS theory. This classifies LiFeAs as a weakly coupled single-gap superconductor, similar to conventional metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا