ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark matter and pulsar signals for Fermi LAT, PAMELA, ATIC, HESS and WMAP data

134   0   0.0 ( 0 )
 نشر من قبل Danny Marfatia
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze new diffuse gamma-ray data from the Fermi Gamma-ray Space Telescope, which do not confirm an excess in the EGRET data at galactic mid-latitudes, in combination with measurements of electron and positron fuxes from PAMELA, Fermi and HESS within the context of three possible sources: dark matter (DM) annihilation or decay into charged leptons, and a continuum distribution of pulsars. We allow for variations in the backgrounds, consider several DM halo profiles, and account for systematic uncertainties in data where possible. We find that all three scenarios represent the data well. The pulsar description holds for a wide range of injection energy spectra. We compare with ATIC data and the WMAP haze where appropriate, but do not fit these data since the former are discrepant with Fermi data and the latter are subject to large systematic uncertainties. We show that for cusped halo profiles, Fermi could observe a spectacular gamma-ray signal of DM annihilation from the galactic center while seeing no excess at mid-latitudes.



قيم البحث

اقرأ أيضاً

109 - A. A. El-Zant , S. Khalil , 2009
If dark matter (DM) annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS and FERMI observatories, then the implied annihilation cross section must be relatively large. This results, in the context of standard cosmological models, in very small relic DM abundances that are incompatible with astrophysical observations. We explore possible resolutions to this apparent conflict in terms of non-standard cosmological scenarios; plausibly allowing for large cross sections, while maintaining relic abundances in accord with current observations.
Assuming that the positron excess in PAMELA satellite data is a consequence of annihilations of cold dark matter, we consider from a model-independent perspective if the data show a preference for the spin of dark matter. We then perform a general an alysis of annihilations into two-body final states to determine what weighted combination of channels best describes the data.
We discuss how the cosmic ray signals reported by the PAMELA and ATIC/PPB-BETS experiments may be understood in a Standard Model (SM) framework supplemented by type II seesaw and a stable SM singlet scalar boson as dark matter. A particle physics exp lanation of the boost factor can be provided by including an additional SM singlet scalar field.
We show that the Galactic Center Excess (GCE) emission, as recently updated by the Fermi-LAT Collaboration, could be explained by the sum of Fermi-bubbles-like emission plus dark matter (DM) annihilation, in the context of a scalar-singlet Higgs port al scenario (SHP). In fact, the standard SHP, where the DM particle, $S$, only has renormalizable interactions with the Higgs, is non-operational due to strong constraints, specially from DM direct detection limits. Thus we consider a most economical extension, called ESHP (for extended SHP), which simply consists in the addition of a second (heavier) scalar singlet in the dark sector. The second scalar can be integrated-out, leaving a standard SHP plus a dimension-6 operator. Essentially, this model has only two relevant parameters (the DM mass and the coupling of the dim-6 operator). DM annihilation occurs mainly into two Higgs bosons, $SSrightarrow hh$. We demonstrate that, despite its economy, the ESHP model provides excellent fits to the GCE (with p-value $sim 0.6-0.7$) for very reasonable values of the parameters, in particular $m_S simeq 130$ GeV. This is achieved without conflicting with other observables and keeping the $S-$particle relic density at the accepted value for the DM content in the universe.
Recently PAMELA released their first results on the positron and antiproton ratios. Stimulated by the new data, we studied the cosmic ray propagation models and calculated the secondary positron and antiproton spectra. The low energy positron ratio c an be consistent with data in the convection propagation model. Above $sim 10$ GeV PAMELA data shows a clear excess on the positron ratio. However, the secondary antiproton is roughly consistent with data. The positron excess may be a direct evidence of dark matter annihilation or decay. We compare the positron and anti-proton spectra with data by assuming dark matter annihilates or decays into different final states. The PAMELA data actually excludes quark pairs being the main final states, disfavors gauge boson final states. Only in the case of leptonic final states the positron and anti-proton spectra can be explained simultaneously. We also compare the decaying and annihilating dark matter scenarios to account for the PAMELA results and prefer to the decaying dark matter. Finally we consider a decaying neutralino dark matter model in the frame of supersymmetry with R-parity violation. The PAMELA data is well fitted with neutralino mass $600sim 2000$ GeV and life time $sim 10^{26}$ seconds. We also demonstrate that neutralino with mass around 2TeV can fit PAMELA and ATIC data simultaneously.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا