ﻻ يوجد ملخص باللغة العربية
Recently PAMELA released their first results on the positron and antiproton ratios. Stimulated by the new data, we studied the cosmic ray propagation models and calculated the secondary positron and antiproton spectra. The low energy positron ratio can be consistent with data in the convection propagation model. Above $sim 10$ GeV PAMELA data shows a clear excess on the positron ratio. However, the secondary antiproton is roughly consistent with data. The positron excess may be a direct evidence of dark matter annihilation or decay. We compare the positron and anti-proton spectra with data by assuming dark matter annihilates or decays into different final states. The PAMELA data actually excludes quark pairs being the main final states, disfavors gauge boson final states. Only in the case of leptonic final states the positron and anti-proton spectra can be explained simultaneously. We also compare the decaying and annihilating dark matter scenarios to account for the PAMELA results and prefer to the decaying dark matter. Finally we consider a decaying neutralino dark matter model in the frame of supersymmetry with R-parity violation. The PAMELA data is well fitted with neutralino mass $600sim 2000$ GeV and life time $sim 10^{26}$ seconds. We also demonstrate that neutralino with mass around 2TeV can fit PAMELA and ATIC data simultaneously.
Assuming that the positron excess in PAMELA satellite data is a consequence of annihilations of cold dark matter, we consider from a model-independent perspective if the data show a preference for the spin of dark matter. We then perform a general an
We propose a new class of R-parity violating extension of MSSM with type II seesaw mechanism for neutrino masses where an unstable gravitino is the dark matter of the Universe. It decays predominantly into three leptons final states, thereby providin
We analyze new diffuse gamma-ray data from the Fermi Gamma-ray Space Telescope, which do not confirm an excess in the EGRET data at galactic mid-latitudes, in combination with measurements of electron and positron fuxes from PAMELA, Fermi and HESS wi
We explore the scalar phenomenology of a model of electroweak scale neutrinos that incorporates the presence of a lepton number violating singlet scalar. An analysis of the pseudoscalar-Majoron field associated to this singlet field is carried out in
If dark matter (DM) annihilation accounts for the tantalizing excess of cosmic ray electron/positrons, as reported by the PAMELA, ATIC, HESS and FERMI observatories, then the implied annihilation cross section must be relatively large. This results,