ترغب بنشر مسار تعليمي؟ اضغط هنا

العلال العالمي تمثيل المعرفة في نماذج اللغة السياقية: مراجعة

Relational World Knowledge Representation in Contextual Language Models: A Review

245   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

عادة ما تستخدم قواعد المعرفة العلوية (KBS) لتمثيل المعرفة العالمية في الآلات. ومع ذلك، في حين أن مفيدة لدرجة عالية من الدقة والتفسيرية، عادة ما يتم تنظيم KBS وفقا للخطط المعرفة يدويا، والتي تحد من تعبيرها وتتطلب جهود إنسانية كبيرة للمهندس والصيانة. في هذا الاستعراض، نأخذ منظور معالجة لغات طبيعية لهذه القيود، وفحص كيفية معالجةها جزئيا من خلال تدريب نماذج اللغة السياقية العميقة (LMS) لاستيعابها والتعبير عن المعرفة العلاجية بأشكال أكثر مرونة. نقترح تنظيم استراتيجيات تمثيل المعرفة في LMS بواسطة مستوى إشراف KB المقدمة، من أي إشراف KB على الإشراف على مستوى الكيان والعلاقات. مساهماتنا هي ثلاثة أضعاف: (1) نحن نقدم تصنيفا رفيع المستوى، توسع لتمثيل المعرفة في LMS؛ (2) ضمن تصنيفنا، نسلط الضوء على النماذج البارزة ومهام التقييم والنتائج، من أجل تقديم استعراض محدث لقدرات تمثيل المعرفة الحالية في LMS؛ و (3) نقترح اتجاهات البحث في المستقبل التي تبني على الجوانب التكميلية ل LMS و KBS كتمثيل المعرفة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

المعرفة الواقعية المكتسبة أثناء التدريب المسبق وتخزينها في معلمات نماذج اللغة (LMS) يمكن أن تكون مفيدة في مهام المصب (على سبيل المثال، الإجابة على السؤال أو الاستدلال النصي). ومع ذلك، يمكن أن تسبب بعض الحقائق أو تصبح عفا عليها الزمن مع مرور الوقت. نق دم المعلمين، وهي طريقة يمكن استخدامها لتحرير هذه المعرفة، وبالتالي إصلاح الأخطاء أو التنبؤات غير المتوقعة دون الحاجة إلى إعادة تدريب مكلفة أو ضبط جيد. إلى جانب كونها فعالة بشكل حسابي، لا تتطلب المعرفة المعرفة أي تعديلات في LM قبل التدريب (على سبيل المثال، استخدام التعلم التلوي). في نهجنا، نحن ندرب شبكة فرط بتحسين مقيد لتعديل حقيقة دون التأثير على بقية المعرفة؛ ثم يتم استخدام شبكة Hyper المدربة للتنبؤ بتحديث الوزن في وقت الاختبار. نعرض فعالية المعرفة مع اثنين من المهندسينيات الشائعة ومهام المعرفة المكثفة: ط) نموذج بيرت يتم ضبطه بشكل جيد لفحص الحقائق، والثاني) نموذج بارت تسلسل إلى تسلسل للرد على السؤال. من خلال طريقتنا، يميل تغيير التنبؤ بشأن الصياغة المحددة لاستعلامه إلى تغيير متسق في التنبؤ أيضا بصيادتها. نظرا لأن هذا يمكن تشجيعه بشكل أكبر من خلال استغلال الصياغة (على سبيل المثال، التي تم إنشاؤها تلقائيا) أثناء التدريب. ومن المثير للاهتمام، أن شبكة فرط لدينا يمكن اعتبارها مسبار "تكشف عن مكونات يجب تغييرها لمعالجة المعرفة الواقعية؛ يوضح تحليلنا أن التحديثات تميل إلى التركيز على مجموعة فرعية صغيرة من المكونات. شفرة المصدر المتاحة في https://github.com/nicola-decao/knowegleditor
اجتذبت نجاح نماذج اللغة السياقية واسعة النطاق اهتماما كبيرا بتحقيق ما يتم ترميزه في تمثيلاتهم.في هذا العمل، نعتبر سؤالا جديدا: إلى أي مدى يتم محاذاة تمثيل السياق للأسماء الخرسانية مع التمثيلات المرئية المقابلة؟نقوم بتصميم نموذج التحقيق الذي يقيم مدى فعالية تميز النصوص النصية فقط في التمييز بين مطابقة العروض المرئية غير المطابقة.تظهر النتائج الخاصة بنا أن تمثيلات اللغة وحدها توفر إشارة قوية لاسترداد تصحيحات الصورة من فئات الكائنات الصحيحة.علاوة على ذلك، فهي فعالة في استرداد حالات محددة من بقع الصور؛يلعب السياق النصي دورا مهما في هذه العملية.نماذج اللغة الترطفة بصريا تتفوق قليلا على نماذج اللغة النصية فقط في حالة استرجاع مثيل، ولكن تحت أداء البشر بشكل كبير.نأمل أن تلهم تحليلاتنا بالبحث في المستقبل في فهم وتحسين القدرات البصرية لنماذج اللغة.
نماذج اللغة العصبية، بما في ذلك النماذج القائمة على المحولات، والتي تدرب مسبقا على كوربورا كبيرة جدا أصبحت وسيلة شائعة لتمثيل النص في مهام مختلفة، بما في ذلك الاعتراف بالعلاقات الدلالية النصية، على سبيل المثال نظرية هيكل الوثائق عبر المستندات. عادة م ا تكون النماذج المدربة مسبقا عادة ما يتم ضبطها على مهام المصب وتستخدم ناقلات تم الحصول عليها كمدخلات للصفين العصبي العميق. لا توجد معرفة لغوية تم الحصول عليها من الموارد والأدوات. في هذه الورقة، نقارن هذه النهج الشاملة بمجموعة من تمثيل الجملة الدوافع التي تعتمد على الرسم البياني الغني في الرسم البياني والشبكة العصبية النموذجية المطبقة على مهمة الاعتراف بعقود CST في البولندية. يصف التمثيل مستويات مختارة من هيكل الجملة بما في ذلك وصف المعاني المعجمية على أساس أجهزة WordNet (PLWOLNET) ومفاهيم Sumo المتصلة. تظهر النتائج التي تم الحصول عليها أنه في حالة العلاقات الصعبة والتدريب المتوسطة الحجم تمثيل النص المخصب من الناحية الدلوية يؤدي إلى نتائج أفضل بكثير.
أحد الجوانب المركزية لنماذج اللغة السياقية هو أنه ينبغي أن يكون قادرا على التمييز بين معنى الكلمات الغامضة من قبل سياقاتهم. في هذه الورقة، نقوم بالتحقيق في مدى تشكيلات الكلمات السياقية التي تشكل تعدد التعدد المعني بالضمان التقليدي من Polysemy ومجهلي. تحقيقا لهذه الغاية، نقدم مجموعة بيانات ممتدة ومشروحة للإنسان من التشابه بين الكلمة المعززة ومقبولية التعاونية، وتقييم مدى جودة تشابه المضبوط يتوقع التشابه في المعنى. تشير كلا النوعين من الأحكام البشرية إلى أن تشابه تفسيرات البلاثي يسقط في متواصل بين هوية المعنى والمجانسة. ومع ذلك، نلاحظ أيضا اختلافات كبيرة في تصنيفات التشابه من PolySemes، وتشكيل أنماط ثابتة لأنواع مختلفة من بديل الشعور بالسلاسة. وهكذا يبدو أن مجموعة البيانات الخاصة بنا هي التقاط جزء كبير من تعقيد الغموض المعجمي، ويمكن أن توفر سرير اختبار واقعي للمشروعات السياقية. من بين النماذج التي تم اختبارها، تظهر بيرت كبيرة أقوى ارتباطا مع تصنيفات تشابه تشابه الكلمة المجمعة، ولكن النضالات لتكرار أنماط التشابه الملاحظة باستمرار. عند تجميع نماذج كلمات غامضة تستند إلى ادباتهم، يعرض النموذج ثقة عالية في تماثيل متفائل وبعض أنواع بدائل البلاستيك، ولكن يفشل باستمرار للآخرين.
نستخدم مجموعة بيانات من الأسماء الأولى الأمريكية مع ملصقات تستند إلى النوع الاجتماعي السائد والمجموعة العرقية لفحص تأثير تواتر Corpus على التقييم والسياق والتشابه إلى التمثيل الأولي والتحيز في Bert و GPT-2 و T5 و XLNet. نظهر أن الأسماء الأكثر في الغا لب والأسماء غير البيضاء أقل تواترا في شركة التدريب لهذه النماذج الأربع هذه. نجد أن الأسماء النادرة هي أكثر مماثلة ذاتيا عبر السياقات، مع Rho Spearman بين التردد والتشابه الذاتي بنسبة منخفضة تصل إلى 763. الأسماء النادرة هي أيضا أقل تشبه التمثيل الأولي، مع تشابه RHO ل Spearman بين التردد ومحاذاة النواة الخطية (CKA) للتمثيل الأولي بما يصل إلى .702. علاوة على ذلك، نجد Rho Spearman بين التحيز العنصري وتكرار الاسم في Bert of .492، مما يشير إلى أن أسماء مجموعات الأقليات ذات التردد الأدنى مرتبطون ببراعة. تخضع تمثيل الأسماء النادرة لمعالجة المزيد من المعالجة، ولكنها أكثر مماثلة ذاتيا، مما يشير إلى أن النماذج تعتمد على تمثيل أقل مستنيرة في السياق بأسماء غير شائعة وأسماء الأقليات التي يتم إجاءاتها على عدد أقل من السياقات الملحوظة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا