ترغب بنشر مسار تعليمي؟ اضغط هنا

نماذج مشغولة العاطفة للكشف عن الإجهاد النفسي الشرح

Emotion-Infused Models for Explainable Psychological Stress Detection

413   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

مشكلة الكشف عن الإجهاد النفسي في الوظائف عبر الإنترنت، وعلى نطاق أوسع، من اكتشاف الناس في محنة أو في حاجة إلى مساعدة، هو تطبيق حساس له القدرة على تفسير النماذج أمر حيوي.هنا، نقدم العمل في استكشاف استخدام مهمة ذات صلة من الناحية الدلوية، والكشف عن المشاعر، من أجل الكشف عن الإجهاد النفسي غير المختص به بنفس القدر ولكن أكثر قابلية للتفسير ومقارنة مع نموذج الصندوق الأسود.على وجه الخصوص، نستكشف استخدام التعلم متعدد المهام وكذلك طراز اللغة القائمة على العاطفة.مع نماذجنا المخفوعة العاطفة، نرى نتائج مماثلة لتحقيق أحدث بيرت.تبين تحليلنا للكلمات المستخدمة للتنبؤ أن نماذجنا المشنقة لدينا مرآة مكونات نفسية من الإجهاد.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يمكن للقدرة على اكتشاف الإجهاد البشري تلقائيا أن تفيد العوامل الذكية الاصطناعية المشاركة في الحوسبة العاطفية والتفاعل البشري والحاسوب.الإجهاد والعاطفة كلا من الدول العاطفية البشرية، وقد أثبت الإجهاد أن يكون لها آثار مهمة على تنظيم العاطفة والتعبير عن ها.على الرغم من أن سلسلة من الأساليب قد تم تأسيسها للكشف عن الإجهاد المتعدد الوسائط، فقد تم اتخاذ خطوات محدودة لاستكشاف الاعتماد الوارد في الاتجاهات الأساسية بين الإجهاد والعاطفة.في هذا العمل، نحقق في قيمة التعرف على العاطفة كملقمة مساعدة لتحسين اكتشاف الإجهاد.نقترح Muser - وهي عبارة عن بنية نموذجية قائمة على المحولات وخوارزمية تعليمية متعددة المهام الجديدة مع استراتيجية أخذ العينات الديناميكية المستندة إلى السرعة.يوضح التقييم في مجموعة بيانات المشاعر المشددة متعددة الوسائط (MUSE) أن طرازنا فعال للكشف عن الإجهاد بالمهام المساعدة الداخلية والخارجية، وتحقق نتائج أحدث النتائج.
في اللغة الرومانية، هناك بعض الموارد لفهم النص التلقائي، ولكن بالنسبة للكشف عن المشاعر، لا يوجد أساس معجم، لا يوجد شيء. لتغطية هذه الفجوة، استخراجت بيانات من Twitter وإنشاء بيانات DataSet الأولى التي تحتوي على تغريدات مشروحة مع خمسة أنواع من العواطف: الفرح والخوف والحزن والغضب والمحايد، بقصد استخدام مهام التعدين وتحليل الرأي. في هذه المقالة، نقدم بعض ميزات مجموعة بياناتنا الجديدة، وخلق معيارا لتحقيق أول نموذج لتعلم الآلات الإشراف للكشف عن المشاعر التلقائية في النصوص القصيرة الرومانية. نحقق في أداء أربع نماذج تعلم الآلة الكلاسيكية: بايس ساذجة متعددة الأثر، الانحدار اللوجستي، تصنيف ناقلات الدعم وتصنيف ناقلات الدعم الخطي. نحن نحقق أيضا في المزيد من الأساليب الحديثة مثل FastText، والتي تستخدم معلومات الكلمات الفرعية. أخيرا، نحن نغلق برت الرومانية لتصنيف النص وإظهار تجاربنا أن النموذج القائم على بيرت لديه أفضل أداء لمهمة الكشف عن العاطفة من التغريدات الرومانية. الكلمات المفتاحية: الكشف عن العاطفة، تويتر، الرومانية، التعلم الآلي الإشراف
نقدم نموذجا للتنبؤ بمشاعر غرامة على طول الأبعاد المستمرة من التكافؤ والإثارة والهيمنة (VAD) مع وجود شرح عاطفي قاطع. يتم تدريب طرازنا عن طريق تقليل فقدان EMD (مسافة تحالف الأرض) بين توزيع النتيجة VAD المتوقعة وتوزيع العاطفة الفئوية التي تم فرزها على ط ول VAD، ويمكن أن تصنف في وقت واحد فئات العاطفة وتتنبؤ بعشرات VAD للحصول على عقوبة معينة. نحن نستخدم Roberta-Large Roberta المدربة مسبقا على ثلاثة كوربورا مختلفة مع ملصقات واضحة وتقييم على Emobank Corpus مع درجات VAD. نظهر أن نهجنا يصل إلى أداء قابلا للمقارنة مع وجود أحدث من المصنفات في تصنيف العاطفة الفئوية ويظهر ارتباطا إيجابيا كبيرا مع درجات فاد للحقيقة الأرضية. أيضا، يؤدي المزيد من التدريب مع الإشراف على تسميات VAD إلى تحسين الأداء خاصة عندما تكون مجموعة البيانات الصغيرة. نقدم أيضا أمثلة على تنبؤات كلمات العاطفة المناسبة التي ليست جزءا من التعليقات التوضيحية الأصلية.
في الخطوة الأولى نحو تحسين الكشف عن المشاعر الهولندية، نحاول الجمع بين نماذج المحولات الهولندية Bertje والرسم مع الأساليب القائمة على المعجم.نقترح دوران هندستين: واحدة يتم فيها حقن معلومات معجمية مباشرة في طراز المحول ونهج التعلم التلوي حيث يتم دمج ا لتنبؤات من المحولات مع ميزات المعجم.يتم اختبار النماذج على 1000 تغريدة هولندية و 1000 تعليق من البرامج التلفزيونية التي تم تفاحها يدويا مع فئات العاطفة والأبعاد.نجد أن Robbert تفوق بوضوح Bertje، ولكن هذا يضيف مباشرة معلومات المعجم إلى المحولات لا يحسن الأداء.في نهج التعلم التلوي، أصبحت معلومات المعجم تأثير إيجابي على Bertje، ولكن ليس على Robbert.هذا يشير إلى أن المزيد من المعلومات العاطفية تحتوي بالفعل ضمن نموذج اللغة الأخير.
الإعلان عن التجارة الإلكترونية ومواقع وسائل التواصل الاجتماعي تقدم انطباعات إعلانية على نطاق الويب بقيمة قيادة يومية لكل من المتسوقين والمعلنين.يتطلب هذا المقياس طرقا برنامجية للكشف عن محتوى غير مناسب في الإعلانات لحماية تجربة العملاء والثقة.يركز هذه الورق على تقنيات تدريب نماذج تصنيف النص بموجب قيود الموارد، بنيت كجزء من الحلول الآلية للاعتدال محتوى الإعلان.نظير على مدى ضعف الإشراف، يمكن تطبيق تعلم المناهج الدراسية والتدريب متعدد اللغات بفعالية على Tune-Tune Bert ومتغيراته لمهام تصنيف النص بالاقتران مع مختلف استراتيجيات تكبير البيانات.تبين تجاربنا الواسعة لغات متعددة أن هذه التقنيات تكتشف فئات الإعلانات العدائية مع مكاسب كبيرة في الدقة في عتبة استدعاء عالية فوق الأساس.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا