تركز طرق تعلم الجهاز لتحليل المستندات المالية بشكل رئيسي على الجزء النصي.ومع ذلك، فإن الأجزاء العددية من هذه المستندات غنية أيضا بمحتوى المعلومات.من أجل تحسين تحليل النص المالي، يجب علينا أن نحقق المعلومات الرقمية في العمق.في ضوء ذلك، فإن الغرض من هذا البحث هو تحديد الارتباط بين CASCTAG المستهدف والأرقام المستهدفة في التغريدات المالية، التي تعد أكثر تحديا من تحليل الأخبار والوثائق الرسمية.في هذا البحث، قمنا بتطوير نهج خلط متعدد النماذج يدمج تمثيلات تشفير ثنائية الاتجاه من المحولات (بيرت) والشبكة العصبية التنافعية (CNN).نحن أيضا ترميز معلومات التبعية خلف النص إلى النموذج لاستخلاص الميزات الكامنة الدلالية.تظهر النتائج التجريبية أن نموذجنا يمكنه تحقيق أداء رائع ومقارنات تفوق.
Machine learning methods for financial document analysis have been focusing mainly on the textual part. However, the numerical parts of these documents are also rich in information content. In order to further analyze the financial text, we should assay the numeric information in depth. In light of this, the purpose of this research is to identify the linking between the target cashtag and the target numeral in financial tweets, which is more challenging than analyzing news and official documents. In this research, we developed a multi model fusion approach which integrates Bidirectional Encoder Representations from Transformers (BERT) and Convolutional Neural Network (CNN). We also encode dependency information behind text into the model to derive semantic latent features. The experimental results show that our model can achieve remarkable performance and outperform comparisons.
المراجع المستخدمة
https://aclanthology.org/
حققت خوارزمية التعلم العميق مؤخرًا الكثير من النجاح خاصة في مجال رؤية الكمبيوتر.يهدف البحث الحالي إلى وصف طريقة التصنيف المطبقة على مجموعة البيانات الخاصة بأنواع متعددة من الصور (صور الرادار ذي الفجوة المركبةSAR والصور ليست SAR) ، أستخدم نقل التعلم م
تهدف الكشف عن العلاقات متعددة القفزات في أسئلة المعرفة الإجابة (KBQA) إلى استرجاع مسار العلاقة بدءا من كيان الموضوع إلى عقدة الإجابة بناء على سؤال معين، حيث قد يشتمل مسار العلاقة على علاقات متعددة. تعامل معظم الأساليب الموجودة بمثابة مشكلة في تعلم ال
تشكل العلاقة بين الهطول المطري_الجريان السطحي إحدى المركبات الأساسية للدورة
الهيدرولوجية للمياه في الطبيعة، كما أنها تشكل واحدة من أكثر الظواهر الهيدرولوجية
تعقيداً و صعوبةً في الفهم؛ و ذلك بسبب كثرة عدد المتغيرات المتضمَّنة في نمذجة
العمليات الفي
الأساليب الحديثة لتحليل الدوائر الانتخابية هي مناهج إشراف أحادية اللغات التي تتطلب كمية كبيرة من البيانات المسمى التي سيتم تدريبها على، مما يحد من فائدتها إلى حفنة فقط من لغات الموارد العالية فقط. لمعالجة هذه المسألة في هذه المسألة لغات الموارد المنخ
تهدف المنطق الرياضي إلى استنتاج الحلول الراضية بناء على أسئلة الرياضيات المعينة. أثبتت أبحاث معالجة اللغة الطبيعية السابقة فعالية التسلسل إلى التسلسل (SEQ2SEQ) أو المتغيرات ذات الصلة على حل الرياضيات. ومع ذلك، تمكن عدد قليل من الأعمال من استكشاف المع