أصبح استخدام آليات الاهتمام في أساليب التعلم العميق شعبية في معالجة اللغة الطبيعية بسبب أدائه المعلقة. يسمح باستخدام هذه الآليات إلى إحدى الأهمية لإدارة أهمية عناصر التسلسل وفقا لسياقها، ومع ذلك، فقد تمت ملاحظتها هذه الأهمية بشكل مستقل بين أزواج عناصر التسلسل (اهتمام الذات) وبين مجال تطبيق التسلسل (الاهتمام السياقي)، مما يؤدي إلى فقد المعلومات ذات الصلة والحد من تمثيل التسلسلات. لمعالجة هذه القضايا الخاصة هذه نقترح آلية الاهتمام الذاتي الذاتي، والتي تتداول قبالة القيود السابقة، من خلال النظر في العلاقات الداخلية والسياقية بين عناصر التسلسل. تم تقييم الآلية المقترحة في أربع مجموعات قياسية لتحقيق مهمة تحديد اللغة المسيئة لتحقيق النتائج المشجعة. تفوقت على آليات الاهتمام الحالية وأظهرت أداء تنافسي فيما يتعلق بالنهج الحديثة من بين الفن.
The use of attention mechanisms in deep learning approaches has become popular in natural language processing due to its outstanding performance. The use of these mechanisms allows one managing the importance of the elements of a sequence in accordance to their context, however, this importance has been observed independently between the pairs of elements of a sequence (self-attention) and between the application domain of a sequence (contextual attention), leading to the loss of relevant information and limiting the representation of the sequences. To tackle these particular issues we propose the self-contextualized attention mechanism, which trades off the previous limitations, by considering the internal and contextual relationships between the elements of a sequence. The proposed mechanism was evaluated in four standard collections for the abusive language identification task achieving encouraging results. It outperformed the current attention mechanisms and showed a competitive performance with respect to state-of-the-art approaches.
المراجع المستخدمة
https://aclanthology.org/
نظرا لأن النهج القائم على المعجم هو أكثر أناقة علميا، أوضح مكونات الحل وأسهل التعميم إلى التطبيقات الأخرى، توفر هذه الورقة نهجا جديدا للغة الهجومية والكشف عن الكلام على وسائل التواصل الاجتماعي، والتي تجسد معجم من الهجوم الضمني والبريثوإقتصار التعبيرا
كما تصبح لغة غير مقبولة اجتماعيا منتشرة في منصات وسائل التواصل الاجتماعي، أصبحت الحاجة إلى اعتدال المحتوى التلقائي أكثر إلحاحا.تقدم هذه المساهمة كوربوس اللغة المسيئة الهولندية (DALC V1.0)، وهي مجموعة بيانات جديدة مع تغريدات يدويا للغة المسيئة.إن مزين
نقدم HATEBERT، نموذج BERT الذي تم تدريبه على إعادة تدريب للكشف عن اللغة المسيئة باللغة الإنجليزية.تم تدريب النموذج على RAL-E، وهي مجموعة بيانات واسعة النطاق من تعليقات Reddit باللغة الإنجليزية من المجتمعات المحظورة لكونها مسيئة أو بغيضة حيث قمنا بإتا
في الوقت الحاضر، تستخدم منصات وسائل التواصل الاجتماعي نماذج التصنيف للتعامل مع خطاب الكراهية واللغة المسيئة.مشكلة هذه النماذج هي ضعفها للحيز.شكل منتشر من التحيز في خطاب الكراهية ومجموعات البيانات اللغوية المسيئة هو التحيز الهندي الناجم عن التصور النف
تبلغ نماذج الكشف عن اللغة المسيئة للحكومة الأمريكية أداء كبير في Corpus، ولكن أداء الفضل عند تقييم التعليقات المسيئة التي تختلف عن سيناريو التدريب.نظرا لأن الشروح البشرية ينطوي على وقت وجهد كبير، فإن النماذج التي يمكن أن تتكيف مع التعليقات التي تم جم