ترغب بنشر مسار تعليمي؟ اضغط هنا

Muon to Electron Conversion; A Symbiosis of Particle and Nuclear Physics

47   0   0.0 ( 0 )
 نشر من قبل T. S. Kosmas
 تاريخ النشر 1994
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

$mu-e$ conversion is the experimentally most interesting lepton flavor violating process. From a theoretical point of view it is an interesting interplay of particle and nuclear physics. The effective transition operator, depending on the gauge model, is in general described in terms of a combination of four terms of transition operators (isoscalar and isovector, Fermi-like as well as axial vector-like). The experimentally most interesting ground state to ground state transition is adequately described in terms of the usual proton and neutron form factors. These were computed in both the shell model and RPA. Since it is of interest to know the portion of the strength exhausted by the coherent (ground state to ground state) transition, the total transition rate to all final states must also be computed. This was done i) in RPA by explicitly summing over all final states ii) in the context of the closure approximation (using shell model and RPA for constructing the initial state) and iii) in the context of nuclear matter mapped into nuclei via a local density approximation. We found that, apart from small local oscillations, the conversion rate keeps increasing from light to heavy nuclear elements. We also find that the coherent mode is dominant (it exhausts more than 90% of the sum rule). Various gauge models are discussed. In general the predicted branching ratio is much smaller compared to the present experimental limit.



قيم البحث

اقرأ أيضاً

Physical systems characterized by a shallow two-body bound or virtual state are governed at large distances by a continuous-scale invariance, which is broken to a discrete one when three or more particles come into play. This symmetry induces a unive rsal behavior for different systems, independent of the details of the underlying interaction, rooted in the smallness of the ratio $ell/a_B ll 1$, where the length $a_B$ is associated to the binding energy of the two-body system $E_2=hbar^2/m a_B^2$ and $ell$ is the natural length given by the interaction range. Efimov physics refers to this universal behavior, which is often hidden by the on-set of system-specific non-universal effects. In this work we identify universal properties by providing an explicit link of physical systems to their unitary limit, in which $a_Brightarrowinfty$, and show that nuclear systems belong to this class of universality.
137 - Matthias Brack 2010
This paper is dedicated to the memory of Vilen Mitrofanovich Strutinsky who would have been 80 this year. His achievements in theoretical nuclear physics are briefly summarized. I discuss in more detail the most successful and far-reaching of them, n amely (1) the shell-correction method and (2) the extension of Gutzwillers semiclassical theory of shell structure and its application to finite fermionic systems, and mention some applications in other domains of physics.
We provide a brief commentary on recent work by Hammer and Son on the scaling behavior of nuclear reactions involving the emission of several loosely bound neutrons. In this work they discover a regime, termed unnuclear physics, in which these reacti ons are governed by an approximate conformal symmetry of the nuclear force. Remarkably, the scaling exponents that govern nuclear reactions can be related to the energies of ultracold atomic drops confined in harmonic potentials. We also comment on the importance and the limitations of this approximate symmetry in the physics of neutron stars.
91 - J. Kristiano , S. Clymton , 2017
We propose the use of pure spin-3/2 propagator in the $(3/2,0) oplus (0,3/2)$ representation in particle and nuclear physics. To formulate the propagator in a covariant form we use the antisymmetric tensor spinor representation and we consider the $D elta$ resonance contribution to the elastic $pi N$ scattering as an example. We find that the use of conventional gauge invariant interaction Lagrangian leads to a problem; the obtained scattering amplitude does not exhibit the resonance behavior. To overcome this problem we modify the interaction by adding a momentum dependence. As in the case of Rarita-Schwinger we find that a perfect resonance description could be obtained in the pure spin-3/2 formulation only if hadronic form factors were considered in the interactions.
134 - Peter Kammel 2008
The singlet capture rate $Lambda_S$ for the semileptonic weak process $mu+p to n+ u_mu$ has been measured in the MuCap experiment. The novel experimental technique is based on stopping muons in an active target, consisting of a time projection chambe r operating with ultra-pure hydrogen. This allows the unambiguous determination of the pseudoscalar form factor $g_P$ of the charged electroweak current of the nucleon. Our first result $g_P(q^2=-0.88 m^2_mu) = 7.3 pm 1.1 $ is consistent with accurate theoretical predictions and constitutes an important test of QCD symmetries. Additional data are being collected with the aim of a three-fold reduction of the experimental uncertainties. Building on the developed advanced techniques, the new MuSun experiment is being planned to measure the muon capture rate on the deuteron to 1.5% precision. This would provide the by far most accurate experimental information on the axial current interacting with the two-nucleon system and determine the low energy constant $L_{1A}$ relevant for solar neutrino reactions. Muon induced atomic and molecular processes represent challenges as well as opportunities for this science program, and their interplay with the main nuclear and weak-interaction physics aspects will be discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا