ﻻ يوجد ملخص باللغة العربية
We propose the use of pure spin-3/2 propagator in the $(3/2,0) oplus (0,3/2)$ representation in particle and nuclear physics. To formulate the propagator in a covariant form we use the antisymmetric tensor spinor representation and we consider the $Delta$ resonance contribution to the elastic $pi N$ scattering as an example. We find that the use of conventional gauge invariant interaction Lagrangian leads to a problem; the obtained scattering amplitude does not exhibit the resonance behavior. To overcome this problem we modify the interaction by adding a momentum dependence. As in the case of Rarita-Schwinger we find that a perfect resonance description could be obtained in the pure spin-3/2 formulation only if hadronic form factors were considered in the interactions.
We have investigated the use of pure spin-3/2 propagator with consistent interaction Lagrangians to describe the property of spin-3/2 resonance. For this purpose we use the antisymmetric tensor spinor representation. By using the primary and secondar
We present an analytic description of numerical results for the ghost propagator G(p^2) in minimal Landau gauge on the lattice. The data were produced in the SU(2) case using the largest lattice volumes to date, for d = 2, 3 and 4 space-time dimensio
An ab initio calculation of nuclear physics from Quantum Chromodynamics (QCD), the fundamental SU(3) gauge theory of the strong interaction, remains an outstanding challenge. Here, we discuss the emergence of key elements of nuclear physics using an
With the introduction of a spectral representation, the Schwinger-Dyson equation (SDE) for the fermion propagator is formulated in Minkowski space in QED. After imposing the on-shell renormalization conditions, analytic solutions for the fermion prop
This paper is dedicated to the memory of Vilen Mitrofanovich Strutinsky who would have been 80 this year. His achievements in theoretical nuclear physics are briefly summarized. I discuss in more detail the most successful and far-reaching of them, n