ﻻ يوجد ملخص باللغة العربية
In a previous paper [1], we presented a three-flavour oscillation analysis of the solar neutrino measurements and of the first data from the KamLAND experiment, in terms of the relevant mass-mixing parameters (delta m^2, theta_12, theta_13). The analysis, performed by including the terrestrial neutrino constraints coming from the CHOOZ (reactor), KEK-to-Kamioka (K2K, accelerator) and Super-Kamiokande (SK, atmospheric) experiments, provided a stringent upper limit on theta_13, namely, sin^2(theta_13)<0.05 at 3 sigma. We reexamine such upper bound in the light of a recent (although preliminary) reanalysis of atmospheric neutrino data performed by the SK collaboration, which seems to shift the preferred value of the largest neutrino square mass difference Delta m^2 downwards. By taking the results of the SK official reanalysis at face value, and by repeating the analysis in [1] with such a new input, we find that the upper bound on theta_{13} is somewhat relaxed: sin^2(theta_13)<0.067 at 3 sigma. Related phenomenological issues are briefly discussed.
We do a re-analysis to asses the impact of the results of the Borexino experiment and the recent 2.8 KTy KamLAND data on the solar neutrino oscillation parameters. The current Borexino results are found to have no impact on the allowed solar neutrino
The first results from the KamLAND experiment have provided confirmational evidence for the Large Mixing Angle (LMA) MSW solution to the solar neutrino problem. We do a global analysis of solar and the recently announced KamLAND data (both rate and s
We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be solar neutrino fl
We report an indication that the elastic scattering rate of solar $^8$B neutrinos with electrons in the Super-Kamiokande detector is larger when the neutrinos pass through the Earth during nighttime. We determine the day/night asymmetry, defined as t
We present the results of a Bayesian analysis of solar and KamLAND neutrino data in the framework of three-neutrino mixing. We adopt two approaches for the prior probability distribution of the oscillation parameters Delta m^2_{21}, sin^2 theta_{12},