ترغب بنشر مسار تعليمي؟ اضغط هنا

7Be Solar Neutrino Measurement with KamLAND

579   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Takemoto
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be solar neutrino flux of (3.26 +/- 0.50) x 10^9 cm^-2s^-1, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a nu_e survival probability of 0.66 +/- 0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 +/- 0.98) x 10^9 cm^-2s^-1, which is consistent with the standard solar model predictions.



قيم البحث

اقرأ أيضاً

We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0. 17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.
This paper details the solar neutrino analysis of the 385.17-day Phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of $^3$He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active $^8$B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be $5.54^{+0.33}_{-0.31}(stat.)^{+0.36}_{-0.34}(syst.)times 10^{6}$ cm$^{-2}$ s$^{-1}$, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of $Delta m^2 = 7.59^{+0.19}_{-0.21}times 10^{-5}{eV}^2$ and $theta = 34.4^{+1.3}_{-1.2}$ degrees.
Borexino is a large-volume liquid scintillator detector installed in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. After several years of construction, data taking started in May 2007. The Borexino phase I ended after abo ut three years of data taking. Borexino provided the first real time measurement of the $^{7}$Be solar neutrino interaction rate with accuracy better than 5% and confirmed the absence of its day-night asymmetry with 1.4% precision. This latter Borexino results alone rejects the LOW region of solar neutrino oscillation parameters at more than 8.5 $sigma$ C.L. Combined with the other solar neutrino data, Borexino measurements isolate the MSW-LMA solution of neutrino oscillations without assuming CPT invariance in the neutrino sector. Borexino has also directly observed solar neutrinos in the 1.0-1.5 MeV energy range, leading to the first direct evidence of the $pep$ solar neutrino signal and the strongest constraint of the CNO solar neutrino flux up to date. Borexino provided the measurement of the solar $^{8}$B neutrino rate with 3 MeV energy threshold.
73 - Andrea Pocar 2018
We present the most recent results from the two currently running solar neutrino experiments, Borexino at the Gran Sasso laboratory in Italy and SuperK at Kamioka mine in Japan. SuperK has released the most precise yet measurement of the 8B solar neu trino interaction rate, with a precision better than 2%, consistent with a constant solar neutrino emission over more than a decade. Borexino has released refined measurements of all neutrinos produced in the pp fusion chain. For the first time, one single detector has measured the entire range of solar neutrinos at once. These new data weakly favor a high-metallicity Sun. Prospects for measuring CNO solar neutrinos with Borexino are discussed, and a brief outlook on the field provided.
The first results from the KamLAND experiment have provided confirmational evidence for the Large Mixing Angle (LMA) MSW solution to the solar neutrino problem. We do a global analysis of solar and the recently announced KamLAND data (both rate and s pectrum) and investigate its effect on the allowed region in the $Delta m^2-tan^2theta$ plane. The best-fit from a combined analysis which uses the KamLAND rate plus global solar data comes at $Delta m^2 = 6.06 times 10^{-5}$ eV $^2$ and $tan^2theta=0.42$, very close to the global solar best-fit, leaving a large allowed region within the global solar LMA contour. The inclusion of the KamLAND spectral data in the global fit gives a best-fit $Delta m^2 = 7.15 times 10^{-5}$ eV $^2$ and $tan^2theta=0.42$ and constrains the allowed areas within LMA, leaving essentially two allowed zones. Maximal mixing though allowed by the KamLAND data alone is disfavored by the global solar data and remains disallowed at about $3sigma$. The LOW solution is now ruled out at about 5$sigma$ w.r.t. the LMA solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا