ﻻ يوجد ملخص باللغة العربية
By cooling of equilibrium lattice fields at finite temperature in SU(2) gauge theory it has been shown that topological objects (calorons) observed on the lattice in the confined phase possess a dyonic substructure which becomes visible under certain circumstances. Here we show that, with decreasing temperature of the equilibrium ensemble, the distribution in the caloron parameter space is modified such that the calorons appear non-dissociated into constituent dyons. Still the calorons have nontrivial holonomy which is demonstrated by the Polyakov line behaviour for these configurations. At vanishing temperature (on a symmetric lattice) topological lumps obtained by cooling possess rotational symmetry in 4D and a characteristic double peak structure of Polyakov lines (defined with respect to temporal and spatial directions) with non-trivial asymptotics.
In equilibrium, at finite temperature below and above the deconfining phase transition, we have generated lattice SU(2) gauge fields and have exposed them to smearing in order to investigate the emerging clusters of topological charge. Analysing in a
The surface tension $sigma$ of the confined-deconfined interface is calculated in pure $SU(3)$ lattice gauge theory at finite temperatures employing the operator and integral methods on a lattice of a size $8^2times N_ztimes 2$ with $N_z=16$ and 40.
We study the topological structure of $SU(3)$ lattice gluodynamics by cluster analysis. This methodological study is meant as preparation for full QCD. The topological charge density is becoming visible in the process of overimproved gradient flow, w
We report on our search for Kraan-van Baal calorons in finite temperature SU(2) lattice ensembles. We also discuss recent progress made in developing a caloron-anticaloron gas model decribing confinement and deconfinement in the context of trivial and non-trivial holonomy.
An analysis of the pion mass and pion decay constant is performed using mixed-action Lattice QCD calculations with domain-wall valence quarks on ensembles of rooted, staggered n_f = 2+1 MILC configurations. Calculations were performed at two lattice