ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological clusters in SU(2) gluodynamics at finite temperature and the evidence for KvB calorons

54   0   0.0 ( 0 )
 نشر من قبل E. -Michael Ilgenfritz
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on our search for Kraan-van Baal calorons in finite temperature SU(2) lattice ensembles. We also discuss recent progress made in developing a caloron-anticaloron gas model decribing confinement and deconfinement in the context of trivial and non-trivial holonomy.



قيم البحث

اقرأ أيضاً

Using smearing of equilibrium lattice fields generated at finite temperature in the confined phase of SU(2) lattice gauge theory, we have investigated the emerging topological objects (clusters of topological charge). Analysing their monopole content according to the Polyakov gauge and the maximally Abelian gauge, we characterize part of them to correspond to nonstatic calorons or static dyons in the context of Kraan-van Baal caloron solutions with non-trivial holonomy. The behaviour of the Polyakov loop inside these clusters and the (model-dependent) topological charges of these objects support this interpretation.
In equilibrium, at finite temperature below and above the deconfining phase transition, we have generated lattice SU(2) gauge fields and have exposed them to smearing in order to investigate the emerging clusters of topological charge. Analysing in a ddition the monopole clusters according to the maximally Abelian gauge, we have been able to characterize part of the topological clusters to correspond either to non-static calorons or static dyons in the context of Kraan-van Baal caloron solutions with non-trivial holonomy. We show that the relative abundance of these calorons and dyons is changing with temperature and offer an interpretation as dissociation of calorons into dyons with increasing temperature. The profile of the Polyakov loop inside the topological clusters and the (model-dependent) accumulated topological cluster charges support this interpretation. Above the deconfining phase transition light dyons (according to Kraan-van Baal caloron solutions with almost trivial holonomy) become the most abundant topological objects. They are presumably responsible for the magnetic confinement in the deconfined phase.
We apply the liquid droplet model to describe the clustering phenomenon in SU(2) gluodynamics, especially, in the vicinity of the deconfinement phase transition. In particular, we analyze the size distributions of clusters formed by the Polyakov loop s of the same sign. Within such an approach this phase transition can be considered as the transition between two types of liquids where one of the liquids (the largest droplet of a certain Polyakov loop sign) experiences a condensation, while the other one (the next to largest droplet of opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, and their size distributions are described by the liquid droplet parameterization. By fitting the lattice data we have extracted the value of Fisher exponent $tau =$ 1.806 $pm$ 0.008. Also we found that the temperature dependences of the surface tension of both gaseous clusters are entirely different below and above the phase transition and, hence, they can serve as an order parameter. The critical exponents of the surface tension coefficient in the vicinity of the phase transition are found. Our analysis shows that the temperature dependence of the surface tension coefficient above the critical temperature has a $T^2$ behavior in one gas of clusters and $T^4$ in the other one.
We study the topological structure of $SU(3)$ lattice gluodynamics by cluster analysis. This methodological study is meant as preparation for full QCD. The topological charge density is becoming visible in the process of overimproved gradient flow, w hich is monitored by means of the the Inverse Participation Ratio (IPR). The flow is stopped at the moment when calorons dissociate into dyons due to the overimproved character of the underlying action. This gives the possibility to simultaneously detect all three dyonic constituents of KvBLL calorons in the gluonic field. The behaviour of the average Polyakov loop under (overimproved) gradient flow could be also (as its value) a diagnostics for the actual phase the configuration is belonging to. Timelike Abelian monopole currents and specific patterns of the local Polyakov loop are correlated with the topological clusters.The spectrum of reconstructed cluster charges $Q_{cl}$ corresponds to the phases. It is scattered around $Q_{cl} approx pm 1/3$ in the confined phase, whereas it is $Q_{cl} approx pm 0.5 div 0.7$ for heavy dyons and $|Q_{cl}| < 0.3$ for light dyons in the deconfined phase. Heavy dyons are increasingly suppressed with increasing temperature. The paper is dedicated to the memory of Michael Mueller-Preussker who was a member of our research group for more than twenty years.
73 - S. Aoki 2017
We study the topological charge in $N_f=2$ QCD at finite temperature using Mobius domain-wall fermions. The susceptibility $chi_t$ of the topological charge defined either by the index of overlap Dirac operator or a gluonic operator is investigated a t several values of temperature $T (>T_c)$ varying the quark mass. A strong suppression of the susceptibility is observed below a certain value of the quark mass. The relation with the restoration of $U_A(1)$ is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا