ترغب بنشر مسار تعليمي؟ اضغط هنا

Low SNR Capacity of Fading Channels -- MIMO and Delay Spread

64   0   0.0 ( 0 )
 نشر من قبل Vignesh Sethuraman
 تاريخ النشر 2007
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Discrete-time Rayleigh fading multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter and receiver. The fading is assumed to be correlated in time and independent from antenna to antenna. Peak and average transmit power constraints are imposed, either on the sum over antennas, or on each individual antenna. In both cases, an upper bound and an asymptotic lower bound, as the signal-to-noise ratio approaches zero, on the channel capacity are presented. The limit of normalized capacity is identified under the sum power constraints, and, for a subclass of channels, for individual power constraints. These results carry over to a SISO channel with delay spread (i.e. frequency selective fading).



قيم البحث

اقرأ أيضاً

Discrete-time Rayleigh fading single-input single-output (SISO) and multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter or the receiver. The fading is assumed to be stationary and correl ated in time, but independent from antenna to antenna. Peak-power and average-power constraints are imposed on the transmit antennas. For MIMO channels, these constraints are either imposed on the sum over antennas, or on each individual antenna. For SISO channels and MIMO channels with sum power constraints, the asymptotic capacity as the peak signal-to-noise ratio tends to zero is identified; for MIMO channels with individual power constraints, this asymptotic capacity is obtained for a class of channels called transmit separable channels. The results for MIMO channels with individual power constraints are carried over to SISO channels with delay spread (i.e. frequency selective fading).
Flat-fading channels that are correlated in time are considered under peak and average power constraints. For discrete-time channels, a new upper bound on the capacity per unit time is derived. A low SNR analysis of a full-scattering vector channel i s used to derive a complimentary lower bound. Together, these bounds allow us to identify the exact scaling of channel capacity for a fixed peak to average ratio, as the average power converges to zero. The upper bound is also asymptotically tight as the average power converges to zero for a fixed peak power. For a continuous time infinite bandwidth channel, Viterbi identified the capacity for M-FSK modulation. Recently, Zhang and Laneman showed that the capacity can be achieved with non-bursty signaling (QPSK). An additional contribution of this paper is to obtain similar results under peak and average power constraints.
The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential informati on needs to be kept as secret as possible from receiver 2. The channel state information (CSI) is assumed to be known at both the transmitter and the receivers. The secrecy capacity region is first established for the parallel Gaussian BCC, and the optimal source power allocations that achieve the boundary of the secrecy capacity region are derived. In particular, the secrecy capacity region is established for the Gaussian case of the Csiszar-Korner BCC model. The secrecy capacity results are then applied to give the ergodic secrecy capacity region for the fading BCC.
In this paper the performance limits and design principles of rateless codes over fading channels are studied. The diversity-multiplexing tradeoff (DMT) is used to analyze the system performance for all possible transmission rates. It is revealed fro m the analysis that the design of such rateless codes follows the design principle of approximately universal codes for parallel multiple-input multiple-output (MIMO) channels, in which each sub-channel is a MIMO channel. More specifically, it is shown that for a single-input single-output (SISO) channel, the previously developed permutation codes of unit length for parallel channels having rate LR can be transformed directly into rateless codes of length L having multiple rate levels (R, 2R, . . ., LR), to achieve the DMT performance limit.
384 - Xiaochuan Zhao 2008
A novel maximum Doppler spread estimation algorithm for OFDM systems with comb-type pilot pattern is presented in this paper. By tracking the drifting delay subspace of time-varying multipath channels, a Doppler dependent parameter can be accurately measured and further expanded and transformed into a non-linear high-order polynomial equation, from which the maximum Doppler spread is readily solved by resorting to the Newtons method. Its performance is demonstrated by simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا