ﻻ يوجد ملخص باللغة العربية
Discrete-time Rayleigh fading single-input single-output (SISO) and multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter or the receiver. The fading is assumed to be stationary and correlated in time, but independent from antenna to antenna. Peak-power and average-power constraints are imposed on the transmit antennas. For MIMO channels, these constraints are either imposed on the sum over antennas, or on each individual antenna. For SISO channels and MIMO channels with sum power constraints, the asymptotic capacity as the peak signal-to-noise ratio tends to zero is identified; for MIMO channels with individual power constraints, this asymptotic capacity is obtained for a class of channels called transmit separable channels. The results for MIMO channels with individual power constraints are carried over to SISO channels with delay spread (i.e. frequency selective fading).
Discrete-time Rayleigh fading multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter and receiver. The fading is assumed to be correlated in time and independent from antenna to antenna. Pe
Flat-fading channels that are correlated in time are considered under peak and average power constraints. For discrete-time channels, a new upper bound on the capacity per unit time is derived. A low SNR analysis of a full-scattering vector channel i
The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential informati
The capacity of noncoherent fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can
For delay-limited communication over block-fading channels, the difference between the ergodic capacity and the maximum achievable expected rate for coding over a finite number of coherent blocks represents a fundamental measure of the penalty incurr