ﻻ يوجد ملخص باللغة العربية
We implement substrate rotation in a 2+1 dimensional solid-on-solid model of ion beam sputtering of solid surfaces. With this extension of the model, we study the effect of concurrent rotation, as the surface is sputtered, on possible topographic regions of surface patterns. In particular we perform a detailed numerical analysis of the time evolution of dots obtained from our Monte Carlo simulations at off-normal-incidence sputter erosion. We found the same power-law scaling exponents of the dot characteristics for two different sets of ion-material combinations, without and with substrate rotation.
Pattern formation on semiconductor surfaces induced by low energetic ion-beam erosion under normal and oblique incidence is theoretically investigated using a continuum model in form of a stochastic, nonlocal, anisotropic Kuramoto-Sivashinsky equatio
Epitaxial self-assembled quantum dots (SAQDs) are of both technological and fundamental interest, but their reliable manufacture still presents a technical challenge. To better understand the formation, morphology and ordering of epitaxial self-assem
The morphology evolution of Si (100) surfaces under 1200 eV Ar+ ion bombardment at normal incidence with and without metal incorporation is presented. The formation of nanodot patterns is observed only when the stationary Fe concentration in the surf
We study solid surface morphology created by off-normal ion-beam sputtering with an atomistic, solid-on-solid model of sputter erosion. With respect to an earlier version of the model, we extend this model with the inclusion of lateral erosion. Using
We investigate the effects of roughness and fractality on the normal contact stiffness of rough surfaces. Samples of isotropically roughened aluminium surfaces are considered. The roughness and fractal dimension were altered through blasting using di