ﻻ يوجد ملخص باللغة العربية
We investigate the X-ray number counts in the 1-2 Ms Chandra Deep Fields (CDFs) to determine the contributions of faint X-ray source populations to the extragalactic X-ray background (XRB). X-ray sources were separated into Active Galactic Nuclei (AGN), star-forming galaxies, and Galactic stars based on several criteria. We find that AGN continue to dominate the number counts in the 0.5-2.0 keV and 2-8 keV bands. At flux limits of ~2.5e-17 erg cm-2 s-1 (0.5-2.0 keV) and ~1.4e-16 erg cm-2 s-1 (2-8 keV), the overall AGN source densities are 7166 (+304/-292) and 4558 (+216/-207) sources deg-2, respectively; these are factors of ~10-20 higher than found in the deepest optical spectroscopic surveys. While still a minority, the number counts of star-forming galaxies climb steeply such that they eventually achieve source densities of 1727 (+187/-169) and 711 (+270/-202) sources deg-2 at the CDF 0.5-2.0 keV and 2-8 keV flux limits, respectively. Adopting recent XRB flux densities measurements, the CDFs resolve a total of 89.5% (+5.9%/-5.7%) and 86.9% (+6.6%/-6.3%) of the extragalactic 0.5-2.0 keV and 2-8 keV XRBs, respectively. Extrapolation of the number-count slopes can easily account for the entire 0.5-2.0 keV and 2-8 keV XRBs to within statistical errors. We also revisit the reported differences between the CDF-North and CDF-South number counts, finding that the two fields are consistent except for sources in the 2-8 keV band below F(2-8 keV)~1e-15 erg cm-2 s-1, where deviations gradually increase to ~3.9 sigma.
The behaviour of the X-ray number counts of normal galaxies at faint (-18<Log F<-15 cgs in the 0.5-2.0 keV band) fluxes is investigated. The joint use of information from radio, far infrared and X-ray surveys allows the determination of the LogN-LogS
We have combined multi-wavelength observations of a selected sample of starforming galaxies with galaxy evolution models in order to compare the results obtained for different SFR tracers and to study the effect that the evolution of the starforming
We investigate the spatial clustering of X-ray selected sources in the two deepest X-ray fields to date, namely the 2Msec Chandra Deep Field North (CDFN) and the 1Msec Chandra Deep Field South (CDFS). The projected correlation function w(r_p), measur
Deep Swift UV/Optical Telescope (UVOT) imaging of the Chandra Deep Field South is used to measure galaxy number counts in three near ultraviolet (NUV) filters (uvw2: 1928 A, uvm2: 2246 A, uvw1: 2600 A) and the u band (3645 A). UVOT observations cover
(abridged) A detailed comparison is performed of the LFs compiled at infrared, radio and optical wavelengths and converted into XLFs using available relations with the XLF directly estimated in the 0.5--2 keV energy band from X-ray surveys (Norman et