ترغب بنشر مسار تعليمي؟ اضغط هنا

The spatial clustering of X-ray selected AGN and galaxies in the Chandra Deep Field South and North

264   0   0.0 ( 0 )
 نشر من قبل Roberto Gilli
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Gilli




اسأل ChatGPT حول البحث

We investigate the spatial clustering of X-ray selected sources in the two deepest X-ray fields to date, namely the 2Msec Chandra Deep Field North (CDFN) and the 1Msec Chandra Deep Field South (CDFS). The projected correlation function w(r_p), measured on scales ~0.2-10 h^-1 Mpc for a sample of 240 sources with spectroscopic redshift in the CDFN and 124 sources in the CDFS at a median redshift of z~0.8, is used to constrain the amplitude and slope of the real space correlation function xi(r)=(r/r0)^-gamma. The clustering signal is detected at high confidence (>~ 7 sigma) in both fields. The amplitude of the correlation is found to be significantly different in the two fields, the correlation length r0 being 8.6 +- 1.2 h^-1 Mpc in the CDFS and 4.2 +- 0.4 h^-1 Mpc in the CDFN, while the correlation slope gamma is found to be flat in both fields: gamma=1.33 +- 0.11 in the CDFS and gamma=1.42 +- 0.07 in the CDFN (a flat Universe with Omega_m=0.3 and Omega_L=0.7 is assumed; 1 sigma Poisson error estimates are considered). The correlation function has been also measured separately for sources classified as AGN or galaxies. In both fields AGN have a median redshift of z~0.9 and a median 0.5-10 keV luminosity of L_x~10^43 erg s^-1, i.e. they are generally in the Seyfert luminosity regime. As in the case of the total samples, we found a significant difference in the AGN clustering amplitude between the two fields, the best fit correlation parameters being r0=10.3 +- 1.7 h^-1 Mpc, gamma=1.33 +- 0.14 in the CDFS, and r0=5.5 +- 0.6 h^-1 Mpc, gamma=1.50 +- 0.12 in the CDFN. Within each field no statistically significant difference is found between soft and hard X-ray selected sources or between type 1 and type 2 AGN. (abridged)



قيم البحث

اقرأ أيضاً

612 - R. Gilli , G. Zamorani , T. Miyaji 2008
We study the spatial clustering of 538 X-ray selected AGN in the 2 deg^2 XMM-COSMOS field that are spectroscopically identified to I_{AB}<23 and span the redshift range z=0.2-3.0. The median redshift and luminosity of the sample are z = 0.98 and L_{0 .5-10}=6.3 x 10^{43} erg/s, respectively. A strong clustering signal is detected at ~18sigma level, which is the most significant measurement obtained to date for clustering of X-ray selected AGN. By fitting the projected correlation function w(r_p) with a power law on scales of r_p=0.3-40 Mpc/h, we derive a best fit comoving correlation length of r_0 = 8.6 +- 0.5 Mpc/h and slope of gamma=1.88 +- 0.07 (Poissonian errors; bootstrap errors are about a factor of 2 larger). An excess signal is observed in the range r_p~5-15 Mpc/h, which is due to a large scale structure at z ~ 0.36 containing about 40 AGN. When removing the z ~ 0.36 structure, or computing w(r_p) in a narrower range around the peak of the redshift distribution (e.g. z=0.4-1.6), the correlation length decreases to r_0 ~ 5-6 Mpc/h, which is consistent with that observed for bright optical QSOs at the same redshift. We investigate the clustering properties of obscured and unobscured AGN separately. Within the statistical uncertainties, we do not find evidence that AGN with broad optical lines (BLAGN) cluster differently from AGN without broad optical lines (non-BLAGN). The correlation length measured for XMM-COSMOS AGN at z~1 is similar to that of massive galaxies (stellar mass M_*> 3 x 10^{10} M_sun) at the same redshift. This suggests that AGN at z~1 are preferentially hosted by massive galaxies, as observed both in the local and in the distant (z~2) Universe. (shortened)
We have combined multi-wavelength observations of a selected sample of starforming galaxies with galaxy evolution models in order to compare the results obtained for different SFR tracers and to study the effect that the evolution of the starforming regions has on them. We also aimed at obtaining a better understanding of the corrections due to extinction and nuclear activity on the derivation of the SFR. We selected the sample from Chandra data for the well studied region Chandra Deep Field South (CDFS) and chose the objects that also have UV and IR data from GALEX and GOODS-Spitzer respectively. Our main finding is that there is good agreement between the extinction corrected SFR(UV) and the SFR(X), and we confirm the use of X-ray luminosities as a trustful tracer of recent star formation activity. Nevertheless, at SFR(UV) larger than about 5Msol/year there are several galaxies with an excess of SFR(X) suggesting the presence of an obscured AGN not detected in the optical spectra. We conclude that the IR luminosity is driven by recent star formation even in those galaxies where the SFR(X) is an order of magnitude higher than the SFR(UV) and therefore may harbour an AGN. One object shows SFR(X) much lower than expected based on the SFR(UV); this SFR(X) `deficit may be due to an early transient phase before most of the massive X-ray binaries were formed. An X-ray deficit could be used to select extremely young bursts in an early phase just after the explosion of the first supernovae associated with massive stars and before the onset of massive X-ray binaries.
We investigate the nature of a sample of 92 Spitzer/MIPS 24 micron selected galaxies in the CDFS, showing power law-like emission in the Spitzer/IRAC 3.6-8 micron bands. The main goal is to determine whether the galaxies not detected in X-rays (47% o f the sample) are part of the hypothetical population of obscured AGN not detected even in deep X-ray surveys. The majority of the IR power-law galaxies are ULIRGs at z>1, and those with LIRG-like IR luminosities are usually detected in X-rays. The optical to IR spectral energy distributions (SEDs) of the X-ray detected galaxies are almost equally divided between a BLAGN SED class (similar to an optically selected QSO) and a NLAGN SED (similar to the BLAGN SED but with an obscured UV/optical continuum). A small fraction of SEDs resemble warm ULIRG galaxies (e.g., Mrk231). Most galaxies not detected in X-rays have SEDs in the NLAGN+ULIRG class as they tend to be optically fainter, and possibly more obscured. Moreover, the IR power-law galaxies have SEDs significantly different from those of high-z (z_sp>1) IR (24 micron) selected and optically bright (VVDS I_AB<=24) star-forming galaxies whose SEDs show a very prominent stellar bump at 1.6 micron. The galaxies detected in X-rays have 2-8 keV rest-frame luminosities typical of AGN. The galaxies not detected in X-rays have global X-ray to mid-IR SED properties that make them good candidates to contain IR bright X-ray absorbed AGN. If all these sources are actually obscured AGN, we would observe a ratio of obscured to unobscured 24 micron detected AGN of 2:1, whereas models predict a ratio of up to 3:1. Additional studies using Spitzer to detect X-ray-quiet AGN are likely to find more such obscured sources.
We investigate the nature of the faint X-ray source population through X-ray spectroscopy and variability analyses of 136 AGN detected in the 2 Ms Chandra Deep Field-North survey with > 200 background-subtracted 0.5-8.0 keV counts [F(0.5-8.0 keV)=(1. 4-200)e-15 erg cm^{-2} s^{-1}]. Our preliminary spectral analyses yield median spectral parameters of Gamma=1.61 and intrinsic N_H=6.2e21 cm^{-2} (z=1 assumed when no redshift available) when the AGN spectra are fitted with a simple absorbed power-law model. However, considerable spectral complexity is apparent (e.g., reflection, partial covering) and must be taken into account to model the data accurately. Moreover, the choice of spectral model (i.e., free vs. fixed photon index) has a pronounced effect on the derived N_H distribution and, to a lesser extent, the X-ray luminosity distribution. Ten of the 136 AGN (~7%) show significant Fe Kalpha emission-line features with equivalent widths in the range 0.1-1.3 keV. Two of these emission-line AGN could potentially be Compton thick (i.e., Gamma < 1.0 and large Fe Kalpha equivalent width). Finally, we find that 81 (~60%) of the 136 AGN show signs of variability, and that this fraction increases significantly (~80-90%) when better photon statistics are available.
We study the spatial distribution of X-ray selected AGN in the framework of hierarchical co-evolution of supermassive black holes and their host galaxies and dark matter haloes. To this end, we have applied the model developed by Croton et al.(2006), De Lucia & Blaizot(2007) and Marulli et al.(2008) to the output of the Millennium Run and obtained hundreds of realizations of past light-cones from which we have extracted realistic mock AGN catalogues that mimic the Chandra deep fields. We find that the model AGN number counts are in fair agreement with observations, except at fluxes <1e-15 erg/cm^2/s. The spatial two-point correlation function predicted by the model is well described by a power-law relation out to 20 Mpc/h, in close agreement with observations. Our model matches the correlation length r_0 of AGN in the Chandra Deep Field North but underestimates it in the Chandra Deep Field South. When fixing the slope to gamma = 1.4, as in Gilli et al. (2005), the statistical significance of the mismatch is 2-2.5 sigma, suggesting that the predicted cosmic variance, which dominates the error budget, may not account for the different correlation length of the AGN in the two fields. While our results are robust to changes in the model prescriptions for the AGN lightcurves, the luminosity dependence of the clustering is sensitive to the different lightcurve models adopted. However, irrespective of the model considered, the luminosity dependence of the AGN clustering in our mock fields seems to be weaker than in the real Chandra fields. The significance of this mismatch needs to be confirmed using larger datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا