ﻻ يوجد ملخص باللغة العربية
These are lecture notes for the course Poisson geometry and deformation quantization given by the author during the fall semester 2020 at the University of Zurich. The first chapter is an introduction to differential geometry, where we cover manifolds, tensor fields, integration on manifolds, Stokes theorem, de Rhams theorem and Frobenius theorem. The second chapter covers the most important notions of symplectic geometry such as Lagrangian submanifolds, Weinsteins tubular neighborhood theorem, Hamiltonian mechanics, moment maps and symplectic reduction. The third chapter gives an introduction to Poisson geometry where we also cover Courant structures, Dirac structures, the local splitting theorem, symplectic foliations and Poisson maps. The fourth chapter is about deformation quantization where we cover the Moyal product, $L_infty$-algebras, Kontsevichs formality theorem, Kontsevichs star product construction through graphs, the globalization approach to Kontsevichs star product and the operadic approach to formality. The fifth chapter is about the quantum field theoretic approach to Kontsevichs deformation quantization where we cover functional integral methods, the Moyal product as a path integral quantization, the Faddeev-Popov and BRST method for gauge theories, infinite-dimensional extensions, the Poisson sigma model, the construction of Kontsevichs star product through a perturbative expansion of the functional integral quantization for the Poisson sigma model for affine Poisson structures and the general construction.
We propose a generalization of quantization as a categorical way. For a fixed Poisson algebra quantization categories are defined as subcategories of R-module category with the structure of classical limits. We construct the generalized quantization
Lecture notes for the course Batalin-Vilkovisky formalism and applications in topological quantum field theory given at the University of Notre Dame in the Fall 2016 for a mathematical audience. In these lectures we give a slow introduction to the pe
We consider the $osp(1|2)$-invariant bilinear operations on weighted densities on the supercircle $S^{1|1}$ called the supertransvectants. These operations are analogues of the famous Gordan transvectants (or Rankin-Cohen brackets). We prove that the
We give a detailed explicit computation of weights of Kontsevich graphs which arise from connection and curvature terms within the globalization picture for the special case of symplectic manifolds. We will show how the weights for the curvature grap
We present a physical interpretation of the doubling of the algebra, which is the basic ingredient of the noncommutative spectral geometry, developed by Connes and collaborators as an approach to unification. We discuss its connection to dissipation