ﻻ يوجد ملخص باللغة العربية
We show that for primes $N, p geq 5$ with $N equiv -1 bmod p$, the class number of $mathbb{Q}(N^{1/p})$ is divisible by $p$. Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when $N equiv -1 bmod p$, there is always a cusp form of weight $2$ and level $Gamma_0(N^2)$ whose $ell$-th Fourier coefficient is congruent to $ell + 1$ modulo a prime above $p$, for all primes $ell$. We use the Galois representation of such a cusp form to explicitly construct an unramified degree $p$ extension of $mathbb{Q}(N^{1/p})$.
Ramanujan in his second notebook recorded total of seven $P$--$Q$ modular equations involving theta--function $f(-q)$ with moduli of orders 1, 3, 5 and 15. In this paper, modular equations analogous to those recorded by Ramanujan are obtained involvi
In his second notebook, Ramanujan recorded total of 23 P-Q modular equations involving theta-functions $f(-q)$, $varphi(q)$ and $psi(q)$. In this paper, modular equations analogous to those recorded by Ramanujan are obtained involving $f(-q)$. As a c
We prove a general stability theorem for $p$-class groups of number fields along relative cyclic extensions of degree $p^2$, which is a generalization of a finite-extension version of Fukudas theorem by Li, Ouyang, Xu and Zhang. As an application, we
This is the sequel to arXiv:2007.01364v1. Let $F$ be any local field with residue characteristic $p>0$, and $mathcal{H}^{(1)}_{overline{mathbb{F}}_p}$ be the mod $p$ pro-$p$-Iwahori Hecke algebra of $mathbf{GL_2}(F)$. In arXiv:2007.01364v1 we have co
We provide a number of new conjectures and questions concerning the syzygies of $mathbb{P}^1times mathbb{P}^1$. The conjectures are based on computing the graded Betti tables and related data for large number of different embeddings of $mathbb{P}^1ti