ﻻ يوجد ملخص باللغة العربية
The prevalence of relation networks in computer vision is in stark contrast to underexplored point-based methods. In this paper, we explore the possibilities of local relation operators and survey their feasibility. We propose a scalable and efficient module, called group relation aggregator. The module computes a feature of a group based on the aggregation of the features of the inner-group points weighted by geometric relations and semantic relations. We adopt this module to design our RPNet. We further verify the expandability of RPNet, in terms of both depth and width, on the tasks of classification and segmentation. Surprisingly, empirical results show that wider RPNet fits for classification, while deeper RPNet works better on segmentation. RPNet achieves state-of-the-art for classification and segmentation on challenging benchmarks. We also compare our local aggregator with PointNet++, with around 30% parameters and 50% computation saving. Finally, we conduct experiments to reveal the robustness of RPNet with regard to rigid transformation and noises.
Surface reconstruction from noisy, non-uniformly, and unoriented point clouds is a fascinating yet difficult problem in computer vision and computer graphics. In this paper, we propose Neural-IMLS, a novel approach that learning noise-resistant signe
We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses
Point cloud processing is very challenging, as the diverse shapes formed by irregular points are often indistinguishable. A thorough grasp of the elusive shape requires sufficiently contextual semantic information, yet few works devote to this. Here
Due to the sparsity and irregularity of the 3D data, approaches that directly process points have become popular. Among all point-based models, Transformer-based models have achieved state-of-the-art performance by fully preserving point interrelatio
Recently deep learning has achieved significant progress on point cloud analysis tasks. Learning good representations is of vital importance to these tasks. Most current methods rely on massive labelled data for training. We here propose a point disc