ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel video super-resolution method that aims at generating high-fidelity high-resolution (HR) videos from low-resolution (LR) ones. Previous methods predominantly leverage temporal neighbor frames to assist the super-resolution of the current frame. Those methods achieve limited performance as they suffer from the challenge in spatial frame alignment and the lack of useful information from similar LR neighbor frames. In contrast, we devise a cross-frame non-local attention mechanism that allows video super-resolution without frame alignment, leading to be more robust to large motions in the video. In addition, to acquire the information beyond neighbor frames, we design a novel memory-augmented attention module to memorize general video details during the super-resolution training. Experimental results indicate that our method can achieve superior performance on large motion videos comparing to the state-of-the-art methods without aligning frames. Our source code will be released.
Video super-resolution, which aims at producing a high-resolution video from its corresponding low-resolution version, has recently drawn increasing attention. In this work, we propose a novel method that can effectively incorporate temporal informat
The video super-resolution (VSR) task aims to restore a high-resolution (HR) video frame by using its corresponding low-resolution (LR) frame and multiple neighboring frames. At present, many deep learning-based VSR methods rely on optical flow to pe
Convolutional neural networks have allowed remarkable advances in single image super-resolution (SISR) over the last decade. Among recent advances in SISR, attention mechanisms are crucial for high-performance SR models. However, the attention mechan
Video super-resolution (VSR), with the aim to restore a high-resolution video from its corresponding low-resolution version, is a spatial-temporal sequence prediction problem. Recently, Transformer has been gaining popularity due to its parallel comp
Psychological studies have found that human visual tracking system involves learning, memory, and planning. Despite recent successes, not many works have focused on memory and planning in deep learning based tracking. We are thus interested in memory