ﻻ يوجد ملخص باللغة العربية
We report on the investigation of thermal transport in non-cured silicone composites with graphene fillers of different lateral dimensions. Graphene fillers are comprised of few-layer graphene flakes with lateral sizes in the range from 400 nm to 1200 nm and number of atomic planes from one to ~100. The distribution of the lateral dimensions and thicknesses of graphene fillers has been determined via atomic force microscopy statistics. It was found that in the examined range of the lateral dimensions the thermal conductivity of the composites increases with the increasing size of the graphene fillers. The observed difference in thermal properties can be related to the average gray phonon mean free path in graphene, which has been estimated to be around ~800 nm at room temperature. The thermal contact resistance of composites with graphene fillers of 1200-nm lateral dimensions was also smaller than that of composites with graphene fillers of 400-nm lateral dimensions. The effects of the filler loading fraction and the filler size on the thermal conductivity of the composites were rationalized within the Kanari model. The obtained results are important for optimization of graphene fillers for applications in thermal interface materials for heat removal from high-power-density electronics.
We report the results of an experimental study of thermal and magnetic properties of nanostructured ferrimagnetic iron oxide composites with graphene and graphite fillers synthesized via the current activated pressure assisted densification. The ther
We investigated thermal properties of the epoxy-based composites with a high loading fraction - up to f=45 vol.% - of the randomly oriented electrically conductive graphene fillers and electrically insulating boron nitride fillers. It was found that
In this work, we report on hot carrier diffusion in graphene across large enough length scales that the carriers are not thermalized across the crystal. The carriers are injected into graphene at one site and their thermal transport is studied as a f
We demonstrate that polymer composites with a low loading of graphene, below 1.2 wt. %, are efficient as electromagnetic absorbers in the THz frequency range. The epoxy-based graphene composites were tested at frequencies from 0.25 THz to 4 THz, reve
We report on experimental investigation of thermal contact resistance of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness. It is found that the thermal contact resistance depends on t