ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-Kelvin Lateral Thermal Transport in Diffusive Graphene

102   0   0.0 ( 0 )
 نشر من قبل Ivan Borzenets
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we report on hot carrier diffusion in graphene across large enough length scales that the carriers are not thermalized across the crystal. The carriers are injected into graphene at one site and their thermal transport is studied as a function of applied power and distance from the heating source, up to tens of micrometers away. Superconducting contacts prevent out-diffusion of hot carriers to isolate the electron-phonon coupling as the sole channel for thermal relaxation. As local thermometers, we use the amplitude of the Universal Conductance Fluctuations, which varies monotonically as a function of temperature. By measuring the electron temperature simultaneously along the length we observe a thermal gradient which results from the competition between electron-phonon cooling and lateral heat flow.



قيم البحث

اقرأ أيضاً

Using the phonon Boltzmann transport formalism and density functional theory based calculations, we show that stanene has a low thermal conductivity. For a sample size of 1$times$1 $mu$m$^{2}$ ($Ltimes W$), the lattice thermal conductivities along th e zigzag and armchair directions are 10.83 W/m-K and 9.2 W/m-K respectively, at room temperature, indicating anisotropy in the thermal transport. The low values of thermal conductivity are due to large anharmonicity in the crystal resulting in high Gr{u}neisen parameters, and low group velocities. The room temperature effective phonon mean free path is found to be around 17 nm indicating that the thermal transport in stanene is completely diffusive in nature. Furthermore, our study brings out the relative importance of the contributing phonon branches and reveals that, at very low temperatures, the contribution to lattice thermal conductivity comes from the flexural acoustic (ZA) branch and at higher temperatures it is dominated by the longitudinal acoustic (LA) branch. We also show that lattice thermal conductivity of stanene can further be reduced by tuning the sample size and creating rough surfaces at the edges. Such tunability in the lattice thermal conductivity in stanene suggests its applications in thermoelectric devices.
The performance of low temperature detectors utilizing thermal effects is determined by their energy relaxation properties. Usually, heat transport experiments in mesoscopic structures are carried out in the steady-state, where temperature gradients do not change in time. Here, we present an experimental study of dynamic thermal relaxation in a mesoscopic system -- thin metallic film. We find that the thermal relaxation of hot electrons in copper and silver films is characterized by several time constants, and that the annealing of the films changes them. In most cases, two time constants are observed, and we can model the system by introducing an additional thermal reservoir coupled to the film electrons. We determine the specific heat of this reservoir and its coupling to the electrons. The experiments point at the importance of grain structure on the thermal relaxation of electrons in metallic films.
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1 - 0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the therm al conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as $T^{4.5}$, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
Step junctions are often present in layered materials, i.e. where single-layer regions meet multi-layer regions, yet their effect on thermal transport is not understood to date. Here, we measure heat flow across graphene junctions (GJs) from monolaye r to bilayer graphene, as well as bilayer to four-layer graphene for the first time, in both heat flow directions. The thermal conductance of the monolayer-bilayer GJ device ranges from ~0.5 to 9.1x10^8 Wm-2K-1 between 50 K to 300 K. Atomistic simulations of such GJ device reveal that graphene layers are relatively decoupled, and the low thermal conductance of the device is determined by the resistance between the two dis-tinct graphene layers. In these conditions the junction plays a negligible effect. To prove that the decoupling between layers controls thermal transport in the junction, the heat flow in both directions was measured, showing no evidence of thermal asymmetry or rectification (within experimental error bars). For large-area graphene applications, this signifies that small bilayer (or multilayer) islands have little or no contribution to overall thermal transport.
Continuing advancements in quantum information processing have caused a paradigm shift from research mainly focused on testing the reality of quantum mechanics to engineering qubit devices with numbers required for practical quantum computation. One of the major challenges in scaling toward large-scale solid-state systems is the limited input/output (I/O) connectors present in cryostats operating at sub-kelvin temperatures required to execute quantum logic with high-fidelity. This interconnect bottleneck is equally present in the device fabrication-measurement cycle, which requires high-throughput and cryogenic characterization to develop quantum processors. Here we multiplex quantum transport of two-dimensional electron gases at sub-kelvin temperatures. We use commercial off-the-shelf CMOS multiplexers to achieve an order of magnitude increase in the number of wires. Exploiting this technology we advance 300 mm epitaxial wafers manufactured in an industrial CMOS fab to a record electron mobility of (3.9$pm$0.6)$times$10$^5$ cm$^2$slash Vs and percolation density of (6.9$pm$0.4)$times$10$^{10}$ cm$^{-2}$, representing a key step toward large silicon qubit arrays. We envision that the demonstration will inspire the development of cryogenic electronics for quantum information and because of the simplicity of assembly, low-cost, yet versatility, we foresee widespread use of similar cryo-CMOS circuits for high-throughput quantum measurements and control of quantum engineered systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا