ﻻ يوجد ملخص باللغة العربية
We consider the problem of controlling the group behavior of a large number of dynamic systems that are constantly interacting with each other. These systems are assumed to have identical dynamics (e.g., birds flock, robot swarm) and their group behavior can be modeled by a distribution. Thus, this problem can be viewed as an optimal control problem over the space of distributions. We propose a novel algorithm to compute a feedback control strategy so that, when adopted by the agents, the distribution of them would be transformed from an initial one to a target one over a finite time window. Our method is built on optimal transport theory but differs significantly from existing work in this area in that our method models the interactions among agents explicitly. From an algorithmic point of view, our algorithm is based on a generalized version of the proximal gradient descent algorithm and has a convergence guarantee with a sublinear rate. We further extend our framework to account for the scenarios where the agents are from multiple species. In the linear quadratic setting, the solution is characterized by coupled Riccati equations which can be solved in closed-form. Finally, several numerical examples are presented to illustrate our framework.
This paper studies an optimal consensus problem for a group of heterogeneous high-order agents with unknown control directions. Compared with existing consensus results, the consensus point is further required to an optimal solution to some distribut
This paper deals with the H2 suboptimal output synchronization problem for heterogeneous linear multi-agent systems. Given a multi-agent system with possibly distinct agents and an associated H2 cost functional, the aim is to design output feedback b
This paper deals with data-driven output synchronization for heterogeneous leader-follower linear multi-agent systems. Given a multi-agent system that consists of one autonomous leader and a number of heterogeneous followers with external disturbance
Robust control is a core approach for controlling systems with performance guarantees that are robust to modeling error, and is widely used in real-world systems. However, current robust control approaches can only handle small system uncertainty, an
We consider the covariance steering problem for nonlinear control-affine systems. Our objective is to find an optimal control strategy to steer the state of a system from an initial distribution to a target one whose mean and covariance are given. Du