ﻻ يوجد ملخص باللغة العربية
This is a tutorial and survey paper on Boltzmann Machine (BM), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random field, Gibbs sampling, statistical physics, Ising model, and the Hopfield network. Then, we introduce the structures of BM and RBM. The conditional distributions of visible and hidden variables, Gibbs sampling in RBM for generating variables, training BM and RBM by maximum likelihood estimation, and contrastive divergence are explained. Then, we discuss different possible discrete and continuous distributions for the variables. We introduce conditional RBM and how it is trained. Finally, we explain deep belief network as a stack of RBM models. This paper on Boltzmann machines can be useful in various fields including data science, statistics, neural computation, and statistical physics.
Symbolic regression is a powerful technique that can discover analytical equations that describe data, which can lead to explainable models and generalizability outside of the training data set. In contrast, neural networks have achieved amazing leve
The restricted Boltzmann machine is a network of stochastic units with undirected interactions between pairs of visible and hidden units. This model was popularized as a building block of deep learning architectures and has continued to play an impor
Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow an
We propose a novel quantum model for the restricted Boltzmann machine (RBM), in which the visible units remain classical whereas the hidden units are quantized as noninteracting fermions. The free motion of the fermions is parametrically coupled to t
Approximate Message Passing (AMP) has been shown to be an excellent statistical approach to signal inference and compressed sensing problem. The AMP framework provides modularity in the choice of signal prior; here we propose a hierarchical form of t