ترغب بنشر مسار تعليمي؟ اضغط هنا

Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery

80   0   0.0 ( 0 )
 نشر من قبل Samuel Kim
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Symbolic regression is a powerful technique that can discover analytical equations that describe data, which can lead to explainable models and generalizability outside of the training data set. In contrast, neural networks have achieved amazing levels of accuracy on image recognition and natural language processing tasks, but are often seen as black-box models that are difficult to interpret and typically extrapolate poorly. Here we use a neural network-based architecture for symbolic regression called the Equation Learner (EQL) network and integrate it with other deep learning architectures such that the whole system can be trained end-to-end through backpropagation. To demonstrate the power of such systems, we study their performance on several substantially different tasks. First, we show that the neural network can perform symbolic regression and learn the form of several functions. Next, we present an MNIST arithmetic task where a separate part of the neural network extracts the digits. Finally, we demonstrate prediction of dynamical systems where an unknown parameter is extracted through an encoder. We find that the EQL-based architecture can extrapolate quite well outside of the training data set compared to a standard neural network-based architecture, paving the way for deep learning to be applied in scientific exploration and discovery.



قيم البحث

اقرأ أيضاً

Deep learning owes much of its success to the astonishing expressiveness of neural networks. However, this comes at the cost of complex, black-boxed models that extrapolate poorly beyond the domain of the training dataset, conflicting with goals of f inding analytic expressions to describe science, engineering and real world data. Under the hypothesis that the hierarchical modularity of such laws can be captured by training a neural network, we introduce OccamNet, a neural network model that finds interpretable, compact, and sparse solutions for fitting data, `{a} la Occams razor. Our model defines a probability distribution over a non-differentiable function space. We introduce a two-step optimization method that samples functions and updates the weights with backpropagation based on cross-entropy matching in an evolutionary strategy: we train by biasing the probability mass toward better fitting solutions. OccamNet is able to fit a variety of symbolic laws including simple analytic functions, recursive programs, implicit functions, simple image classification, and can outperform noticeably state-of-the-art symbolic regression methods on real world regression datasets. Our method requires minimal memory footprint, does not require AI accelerators for efficient training, fits complicated functions in minutes of training on a single CPU, and demonstrates significant performance gains when scaled on a GPU. Our implementation, demonstrations and instructions for reproducing the experiments are available at https://github.com/druidowm/OccamNet_Public.
This is a tutorial and survey paper on Boltzmann Machine (BM), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random field, Gibbs sampling, statistica l physics, Ising model, and the Hopfield network. Then, we introduce the structures of BM and RBM. The conditional distributions of visible and hidden variables, Gibbs sampling in RBM for generating variables, training BM and RBM by maximum likelihood estimation, and contrastive divergence are explained. Then, we discuss different possible discrete and continuous distributions for the variables. We introduce conditional RBM and how it is trained. Finally, we explain deep belief network as a stack of RBM models. This paper on Boltzmann machines can be useful in various fields including data science, statistics, neural computation, and statistical physics.
We demonstrate a library for the integration of domain knowledge in deep learning architectures. Using this library, the structure of the data is expressed symbolically via graph declarations and the logical constraints over outputs or latent variabl es can be seamlessly added to the deep models. The domain knowledge can be defined explicitly, which improves the models explainability in addition to the performance and generalizability in the low-data regime. Several approaches for such an integration of symbolic and sub-symbolic models have been introduced; however, there is no library to facilitate the programming for such an integration in a generic way while various underlying algorithms can be used. Our library aims to simplify programming for such an integration in both training and inference phases while separating the knowledge representation from learning algorithms. We showcase various NLP benchmark tasks and beyond. The framework is publicly available at Github(https://github.com/HLR/DomiKnowS).
Symbolic equations are at the core of scientific discovery. The task of discovering the underlying equation from a set of input-output pairs is called symbolic regression. Traditionally, symbolic regression methods use hand-designed strategies that d o not improve with experience. In this paper, we introduce the first symbolic regression method that leverages large scale pre-training. We procedurally generate an unbounded set of equations, and simultaneously pre-train a Transformer to predict the symbolic equation from a corresponding set of input-output-pairs. At test time, we query the model on a new set of points and use its output to guide the search for the equation. We show empirically that this approach can re-discover a set of well-known physical equations, and that it improves over time with more data and compute.
Upcoming 21cm surveys will map the spatial distribution of cosmic neutral hydrogen (HI) over unprecedented volumes. Mock catalogues are needed to fully exploit the potential of these surveys. Standard techniques employed to create these mock catalogs , like Halo Occupation Distribution (HOD), rely on assumptions such as the baryonic properties of dark matter halos only depend on their masses. In this work, we use the state-of-the-art magneto-hydrodynamic simulation IllustrisTNG to show that the HI content of halos exhibits a strong dependence on their local environment. We then use machine learning techniques to show that this effect can be 1) modeled by these algorithms and 2) parametrized in the form of novel analytic equations. We provide physical explanations for this environmental effect and show that ignoring it leads to underprediction of the real-space 21-cm power spectrum at $kgtrsim 0.05$ h/Mpc by $gtrsim$10%, which is larger than the expected precision from upcoming surveys on such large scales. Our methodology of combining numerical simulations with machine learning techniques is general, and opens a new direction at modeling and parametrizing the complex physics of assembly bias needed to generate accurate mocks for galaxy and line intensity mapping surveys.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا