ﻻ يوجد ملخص باللغة العربية
Symbolic regression is a powerful technique that can discover analytical equations that describe data, which can lead to explainable models and generalizability outside of the training data set. In contrast, neural networks have achieved amazing levels of accuracy on image recognition and natural language processing tasks, but are often seen as black-box models that are difficult to interpret and typically extrapolate poorly. Here we use a neural network-based architecture for symbolic regression called the Equation Learner (EQL) network and integrate it with other deep learning architectures such that the whole system can be trained end-to-end through backpropagation. To demonstrate the power of such systems, we study their performance on several substantially different tasks. First, we show that the neural network can perform symbolic regression and learn the form of several functions. Next, we present an MNIST arithmetic task where a separate part of the neural network extracts the digits. Finally, we demonstrate prediction of dynamical systems where an unknown parameter is extracted through an encoder. We find that the EQL-based architecture can extrapolate quite well outside of the training data set compared to a standard neural network-based architecture, paving the way for deep learning to be applied in scientific exploration and discovery.
Deep learning owes much of its success to the astonishing expressiveness of neural networks. However, this comes at the cost of complex, black-boxed models that extrapolate poorly beyond the domain of the training dataset, conflicting with goals of f
This is a tutorial and survey paper on Boltzmann Machine (BM), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random field, Gibbs sampling, statistica
We demonstrate a library for the integration of domain knowledge in deep learning architectures. Using this library, the structure of the data is expressed symbolically via graph declarations and the logical constraints over outputs or latent variabl
Symbolic equations are at the core of scientific discovery. The task of discovering the underlying equation from a set of input-output pairs is called symbolic regression. Traditionally, symbolic regression methods use hand-designed strategies that d
Upcoming 21cm surveys will map the spatial distribution of cosmic neutral hydrogen (HI) over unprecedented volumes. Mock catalogues are needed to fully exploit the potential of these surveys. Standard techniques employed to create these mock catalogs