ﻻ يوجد ملخص باللغة العربية
Minimum divergence procedures based on the density power divergence and the logarithmic density power divergence have been extremely popular and successful in generating inference procedures which combine a high degree of model efficiency with strong outlier stability. Such procedures are always preferable in practical situations over procedures which achieve their robustness at a major cost of efficiency or are highly efficient but have poor robustness properties. The density power divergence (DPD) family of Basu et al.(1998) and the logarithmic density power divergence (LDPD) family of Jones et al.(2001) provide flexible classes of divergences where the adjustment between efficiency and robustness is controlled by a single, real, non-negative parameter. The usefulness of these two families of divergences in statistical inference makes it meaningful to search for other related families of divergences in the same spirit. The DPD family is a member of the class of Bregman divergences, and the LDPD family is obtained by log transformations of the different segments of the divergences within the DPD family. Both the DPD and LDPD families lead to the Kullback-Leibler divergence in the limiting case as the tuning parameter $alpha rightarrow 0$. In this paper we study this relation in detail, and demonstrate that such log transformations can only be meaningful in the context of the DPD (or the convex generating function of the DPD) within the general fold of Bregman divergences, giving us a limit to the extent to which the search for useful divergences could be successful.
The density power divergence (DPD) and related measures have produced many useful statistical procedures which provide a good balance between model efficiency on one hand, and outlier stability or robustness on the other. The large number of citation
Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit theory for the mean of a function of order statistics is presented. The results include a multivariate central limit theorem and a strong law of
A function $rho:[0,infty)to(0,1]$ is a completely monotonic function if and only if $rho(Vertmathbf{x}Vert^2)$ is positive definite on $mathbb{R}^d$ for all $d$ and thus it represents the correlation function of a weakly stationary and isotropic Gaus
Let $Omega$ be a bounded closed convex set in ${mathbb R}^d$ with non-empty interior, and let ${cal C}_r(Omega)$ be the class of convex functions on $Omega$ with $L^r$-norm bounded by $1$. We obtain sharp estimates of the $epsilon$-entropy of ${cal C
Environments with immobile obstacles or void regions that inhibit and alter the motion of individuals within that environment are ubiquitous. Correlation in the location of individuals within such environments arises as a combination of the mechanism