ترغب بنشر مسار تعليمي؟ اضغط هنا

Corrected pair correlation functions for environments with obstacles

110   0   0.0 ( 0 )
 نشر من قبل Stuart Johnston
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Environments with immobile obstacles or void regions that inhibit and alter the motion of individuals within that environment are ubiquitous. Correlation in the location of individuals within such environments arises as a combination of the mechanisms governing individual behavior and the heterogeneous structure of the environment. Measures of spatial structure and correlation have been successfully implemented to elucidate the roles of the mechanisms underpinning the behavior of individuals. In particular, the pair correlation function has been used across biology, ecology and physics to obtain quantitative insight into a variety of processes. However, naively applying standard pair correlation functions in the presence of obstacles may fail to detect correlation, or suggest false correlations, due to a reliance on a distance metric that does not account for obstacles. To overcome this problem, here we present an analytic expression for calculating a corrected pair correlation function for lattice-based domains containing obstacles. We demonstrate that this corrected pair correlation function is necessary for isolating the correlation associated with the behavior of individuals, rather than the structure of the environment. Using simulations that mimic cell migration and proliferation we demonstrate that the corrected pair correlation function recovers the short-range correlation known to be present in this process, independent of the heterogeneous structure of the environment. Further, we show that the analytic calculation of the corrected pair correlation derived here is significantly faster to implement than the corresponding numerical approach.



قيم البحث

اقرأ أيضاً

A function $rho:[0,infty)to(0,1]$ is a completely monotonic function if and only if $rho(Vertmathbf{x}Vert^2)$ is positive definite on $mathbb{R}^d$ for all $d$ and thus it represents the correlation function of a weakly stationary and isotropic Gaus sian random field. Radial positive definite functions are also of importance as they represent characteristic functions of spherically symmetric probability distributions. In this paper, we analyze the function [rho(beta ,gamma)(x)=1-biggl(frac{x^{beta}}{1+x^{beta}}biggr )^{gamma},qquad xge 0, beta,gamma>0,] called the Dagum function, and show those ranges for which this function is completely monotonic, that is, positive definite, on any $d$-dimensional Euclidean space. Important relations arise with other families of completely monotonic and logarithmically completely monotonic functions.
In this paper, we study sparse signal detection problems in Degree Corrected Exponential Random Graph Models (ERGMs). We study the performance of two tests based on the conditionally centered sum of degrees and conditionally centered maximum of degre es, for a wide class of such ERGMs. The performance of these tests match the performance of the corresponding uncentered tests in the $beta$ model. Focusing on the degree corrected two star ERGM, we show that improved detection is possible at criticality using a test based on (unconditional) sum of degrees. In this setting we provide matching lower bounds in all parameter regimes, which is based on correlations estimates between degrees under the alternative, and of possible independent interest.
We consider the searching for a trail in a maze composite hypothesis testing problem, in which one attempts to detect an anomalous directed path in a lattice 2D box of side n based on observations on the nodes of the box. Under the signal hypothesis, one observes independent Gaussian variables of unit variance at all nodes, with zero, mean off the anomalous path and mean mu_n on it. Under the null hypothesis, one observes i.i.d. standard Gaussians on all nodes. Arias-Castro et al. (2008) showed that if the unknown directed path under the signal hypothesis has known the initial location, then detection is possible (in the minimax sense) if mu_n >> 1/sqrt log n, while it is not possible if mu_n << 1/ log nsqrt log log n. In this paper, we show that this result continues to hold even when the initial location of the unknown path is not known. As is the case with Arias-Castro et al. (2008), the upper bound here also applies when the path is undirected. The improvement is achieved by replacing the linear detection statistic used in Arias-Castro et al. (2008) with a polynomial statistic, which is obtained by employing a multi-scale analysis on a quadratic statistic to bootstrap its performance. Our analysis is motivated by ideas developed in the context of the analysis of random polymers in Lacoin (2010).
85 - Tiefeng Jiang , Ping Li 2021
Hotellings T-squared test is a classical tool to test if the normal mean of a multivariate normal distribution is a specified one or the means of two multivariate normal means are equal. When the population dimension is higher than the sample size, t he test is no longer applicable. Under this situation, in this paper we revisit the tests proposed by Srivastava and Du (2008), who revise the Hotellings statistics by replacing Wishart matrices with their diagonal matrices. They show the revised statistics are asymptotically normal. We use the random matrix theory to examine their statistics again and find that their discovery is just part of the big picture. In fact, we prove that their statistics, decided by the Euclidean norm of the population correlation matrix, can go to normal, mixing chi-squared distributions and a convolution of both. Examples are provided to show the phase transition phenomenon between the normal and mixing chi-squared distributions. The second contribution of ours is a rigorous derivation of an asymptotic ratio-unbiased-estimator of the squared Euclidean norm of the correlation matrix.
Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit theory for the mean of a function of order statistics is presented. The results include a multivariate central limit theorem and a strong law of large numbers. A result similar to Bahadurs representation of quantiles is established for the mean of a function of the marginal quantiles. In particular, it is shown that [sqrt{n}Biggl(frac{1}{n}sum_{i=1}^nphibigl(X_{n:i}^{(1)},...,X_{n:i}^{(d)}bigr)-bar{gamma}Biggr)=frac{1}{sqrt{n}}sum_{i=1}^nZ_{n,i}+mathrm{o}_P(1)] as $nrightarrowinfty$, where $bar{gamma}$ is a constant and $Z_{n,i}$ are i.i.d. random variables for each $n$. This leads to the central limit theorem. Weak convergence to a Gaussian process using equicontinuity of functions is indicated. The results are established under very general conditions. These conditions are shown to be satisfied in many commonly occurring situations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا