ترغب بنشر مسار تعليمي؟ اضغط هنا

A 2HDM for the g-2 and Dark Matter

89   0   0.0 ( 0 )
 نشر من قبل Farinaldo Queiroz
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Muon g-2 experiment at FERMILAB has confirmed the muon anomalous magnetic moment anomaly with an error bar 15% smaller and a different central value compared with the previous Brookhaven result. The combined results from FERMILAB and Brookhaven show a difference with theory at a significance of $4.2sigma$, strongly indicating the presence of new physics. In light of this new result, we discuss a Two Higgs Doublet model augmented by an Abelian gauge symmetry that can simultaneously accommodate a light dark matter candidate and $(g-2)_mu$, in agreement with existing bounds.



قيم البحث

اقرأ أيضاً

Recent precise measurement of the electron anomalous magnetic moment (AMM) adds to the longstanding tension of the muon AMM and together strongly point towards physics beyond the Standard Model (BSM). In this work, we propose a solution to both anoma lies in an economical fashion via a light scalar that emerges from a second Higgs doublet and resides in the $mathcal{O}(10)$-MeV to $mathcal{O}(1)$-GeV mass range yielding the right sizes and signs for these deviations due to one-loop and two-loop dominance for the muon and the electron, respectively. A scalar of this type is subject to a number of various experimental constraints, however, as we show, it can remain sufficiently light by evading all experimental bounds and has the great potential to be discovered in the near-future low-energy experiments. The analysis provided here is equally applicable to any BSM scenario for which a light scalar is allowed to have sizable flavor-diagonal couplings to the charged leptons. In addition to the light scalar, our theory predicts the existence of a nearly degenerate charged scalar and a pseudoscalar, which have masses of the order of the electroweak scale. We analyze possible ways to probe new-physics signals at colliders and find that this scenario can be tested at the LHC by looking at the novel process $pp to H^pm H^pm jj to l^pm l^pm j j + {E!!!!/}_{T}$ via same-sign pair production of charged Higgs bosons.
We construct models with minimal field content that can simultaneously explain the muon g-2 anomaly and give the correct dark matter relic abundance. These models fall into two general classes, whether or not the new fields couple to the Higgs. For t he general structure of models without new Higgs couplings, we provide analytical expressions that only depend on the $SU(2)_L$ representation. These results allow to demonstrate that only few models in this class can simultaneously explain $(g-2)_mu$ and account for the relic abundance. The experimental constraints and perturbativity considerations exclude all such models, apart from a few fine-tuned regions in the parameter space, with new states in the few 100 GeV range. In the models with new Higgs couplings, the new states can be parametrically heavier by a factor $sqrt{1/y_mu}$, with $y_mu$ the muon Yukawa coupling, resulting in masses for the new states in the TeV regime. At present these models are not well constrained experimentally, which we illustrate on two representative examples.
In the light of the recent result of the Muon g-2 experiment and the update on the test of lepton flavour universality $R_K$ published by the LHCb collaboration, we systematically build and discuss a set of models with minimal field content that can simultaneously give: (i) a thermal Dark Matter candidate; (ii) large loop contributions to $bto sellell$ processes able to address $R_K$ and the other $B$ anomalies; (iii) a natural solution to the muon $g-2$ discrepancy through chirally-enhanced contributions.
The discrepancy between the measured value and the Standard Model prediction for the muon anomalous magnetic moment is one of the important issues in the particle physics. In this paper, we consider a two Higgs doublet model (2HDM) where the extra Hi ggs doublet couples to muon and tau in lepton flavor violating (LFV) way and the one-loop correction involving the scalars largely contributes to the muon anomalous magnetic moment. The couplings should be sizable to explain the discrepancy, so that the extra Higgs bosons would dominantly decay into $mutau$ LFV modes, which makes the model testable at the LHC through multi-lepton signatures even though they are produced via the electroweak interaction. We discuss the current status and the future prospect for the extra Higgs searches at the LHC, and demonstrate the reconstruction of the mass spectrum using the multi-lepton events.
In this letter, we show that the wino-Higgsino dark matter (DM) is detectable in near future DM direct detection experiments for almost all consistent parameter space in the spontaneously broken supergravity (SUGRA) if the muon g-2 anomaly is explain ed by the wino-Higgsino loop diagrams. We also point out that the present and future LHC experiments can exclude or confirm this SUGRA explanation of the observed muon g-2 anomaly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا