ترغب بنشر مسار تعليمي؟ اضغط هنا

Wino-Higgsino dark matter in the MSSM from the $g-2$ anomaly

78   0   0.0 ( 0 )
 نشر من قبل Norimi Yokozaki
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we show that the wino-Higgsino dark matter (DM) is detectable in near future DM direct detection experiments for almost all consistent parameter space in the spontaneously broken supergravity (SUGRA) if the muon g-2 anomaly is explained by the wino-Higgsino loop diagrams. We also point out that the present and future LHC experiments can exclude or confirm this SUGRA explanation of the observed muon g-2 anomaly.



قيم البحث

اقرأ أيضاً

The electroweak (EW) sector of the Minimal Supersymmetric Standard Model (MSSM) can account for a variety of experimental data. In particular, it can explain the persistent 3-4 sigma discrepancy between the experimental result for the anomalous magne tic moment of the muon and its Standard Model (SM) prediction. The lightest supersymmetric particle (LSP), which we take as the lightest neutralino, can furthermore account for the observed Dark Matter (DM) content of the universe via coannihilation with the next-to-LSP (NLSP), while being in agreement with negative results from Direct Detection (DD) experiments. Concerning the unsuccessful searches for EW superparticles at the LHC, owing to relatively small production cross-sections, a comparably light EW sector of the MSSM is in full agreement with the experimental data. The DM relic density can fully be explained by a mixed bino/wino LSP. Here we take the relic density as an upper bound, which opens up the possibility of wino and higgsino DM. We first analyze which mass ranges of neutralinos, charginos and scalar leptons are in agreement with all experimental data, including relevant LHC searches. We find roughly an upper limit of ~ 600 GeV for the LSP and NLSP masses. In a second step we assume that the new result of the Run 1 of the MUON G-2 collaboration at Fermilab yields a precision comparable to the existing experimental result with the same central value. We analyze the potential impact of the combination of the Run 1 data with the existing muon g-2 data on the allowed MSSM parameter space. We find that in this case the upper limits on the LSP and NLSP masses are substantially reduced by roughly 100 GeV. We interpret these upper bounds in view of future HL-LHC EW searches as well as future high-energy electron-positron colliders, such as the ILC or CLIC.
We construct models with minimal field content that can simultaneously explain the muon g-2 anomaly and give the correct dark matter relic abundance. These models fall into two general classes, whether or not the new fields couple to the Higgs. For t he general structure of models without new Higgs couplings, we provide analytical expressions that only depend on the $SU(2)_L$ representation. These results allow to demonstrate that only few models in this class can simultaneously explain $(g-2)_mu$ and account for the relic abundance. The experimental constraints and perturbativity considerations exclude all such models, apart from a few fine-tuned regions in the parameter space, with new states in the few 100 GeV range. In the models with new Higgs couplings, the new states can be parametrically heavier by a factor $sqrt{1/y_mu}$, with $y_mu$ the muon Yukawa coupling, resulting in masses for the new states in the TeV regime. At present these models are not well constrained experimentally, which we illustrate on two representative examples.
We explore the ability of current and future dark matter and collider experiments in probing anomalous magnetic moment of the muon, $(g-2)_mu$, within the Minimal Supersymmetric Standard Model (MSSM). We find that the latest PandaX-II/LUX-2016 data g ives a strong constraint on parameter space that accommodates the $(g-2)_{mu}$ within $2sigma$ range, which will be further excluded by the upcoming XENON-1T (2017) experiment. We also find that a 100 TeV $pp$ collider can cover most of our surviving samples that satisfy DM relic density within $3sigma$ range through $Z$ or $h$ resonant effect by searching for trilepton events from $tilde{chi}^0_2tilde{chi}^+_1$ associated production. While the samples that are beyond future sensitivity of trilepton search at a 100 TeV $pp$ collider and the DM direct detections are either higgsino/wino-like LSPs or bino-like LSPs co-annihilating with sleptons. Such compressed regions may be covered by the monojet(-like) searches at a 100 TeV $pp$ collider.
Higgsinos and Wino have strong motivations for being Dark Matter (DM) candidates in supersymmetry, but their annihilation cross sections are quite large. For thermal generation and a single component DM setup the higgsinos or wino may have masses of around 1 or 2-3 TeV respectively. For such DM candidates, a small amount of slepton coannihilation may decrease the effective DM annihilation cross section. This, in turn reduces the lower limit of the relic density satisfied DM mass by more than 50%. Almost a similar degree of reduction of the same limit is also seen for squark coannihilations. However, on the contrary, for near degeneracy of squarks and higgsino DM, near its generic upper limit, the associated coannihilations may decrease the relic density, thus extending the upper limit towards higher DM masses. We also compute the direct and indirect detection signals. Here, because of the quasi-mass degeneracy of the squarks and the LSP, we come across a situation where squark exchange diagrams may contribute significantly or more strongly than the Higgs exchange contributions in the spin-independent direct detection cross section of DM. For the higgsino-DM scenario, we observe that a DM mass of 600 GeV to be consistent with WMAP/PLANCK and LUX data for sfermion coannihilations. The LUX data itself excludes the region of 450 to 600 GeV, by a half order of magnitude of the cross-section, well below the associated uncertainty. The similar combined lower limit for a wino DM is about 1.1 TeV. There is hardly any collider bound from the LHC for squarks and sleptons in such a compressed scenario where sfermion masses are close to the mass of a higgsino/wino LSP.
We demonstrate that the recent measurement of the anomalous magnetic moment of the muon and dark matter can be simultaneously explained within the Minimal Supersymmetric Standard Model. Dark matter is a mostly-bino state, with the relic abundance obt ained via co-annihilations with either the sleptons or wino. The most interesting regions of parameter space will be tested by the next generation of dark matter direct detection experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا