ترغب بنشر مسار تعليمي؟ اضغط هنا

Real-time visualization of metastable charge regulation pathways in molecularly confined slit geometries

74   0   0.0 ( 0 )
 نشر من قبل Markus Valtiner
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transport of ions in molecular-scale confined spaces is central to all aspects of life and technology: into a crack, it may break steel within days; through a membrane separator, it determines the efficiency of electrochemical energy conversion devices; or through lipid membranes, it steers neural communication. Yet, the direct observation of ion mobility and structuring in sub-nanometer confinement is experimentally challenging and, so far, solely accessible to molecular simulations. Here, we show quantitative, 3D molecularly-resolved ion transportation of aqueous ionic liquid and s-block metal ion solutions, confined to electrochemically-modulated, molecular-sized slits. Our analysis of atomically resolved solid/liquid interface unveils generic rules of how enthalpic ion-ion and ion-surface interactions and entropic confinement effects determine the charge regulation mechanism. Altering our general understanding, the confined charge regulation may proceed via fast, kinetically favoured, metastable pathways, followed by slow diffusive thermodynamic ion reorganization, which has important implications for all charge-regulated systems.



قيم البحث

اقرأ أيضاً

Motivated by recent experiments on the rod-like virus bacteriophage fd, confined to circular and annular domains, we present a theoretical study of structural transitions in these geometries. Using the continuum theory of nematic liquid crystals, we examine the competition between bulk elasticity and surface anchoring, mediated by the formation of topological defects. We show analytically that bulk defects are unstable with respect to defects sitting at the boundary. Moreover, in case of an annulus, whose topology does not require the presence of topological defects, under weak anchoring conditions we find that nematic textures with boundary defects are stable compared to the defect free configurations. Thus our simple approach, with no fitting parameters, suggests a possible symmetry breaking mechanism responsible for the formation of one-, two- and three-fold textures under annular confinement.
98 - Tine Curk , Erik Luijten 2020
Nanoparticles in solution acquire charge through dissociation or association of surface groups. Thus, a proper description of their electrostatic interactions requires the use of charge-regulating boundary conditions rather than the commonly employed constant-charge approximation. We implement a hybrid Monte Carlo/Molecular Dynamics scheme that dynamically adjusts the charges of individual surface groups of objects while evolving their trajectories. Charge-regulation effects are shown to qualitatively change self-assembled structures due to global charge redistribution, stabilizing asymmetric constructs. We delineate under which conditions the conventional constant-charge approximation may be employed and clarify the interplay between charge regulation and dielectric polarization.
The net charge of solvated entities, ranging from polyelectrolytes and biomolecules to charged nanoparticles and membranes, depends on the local dissociation equilibrium of individual ionizable groups. Incorporation of this phenomenon, emph{charge re gulation}, in theoretical and computational models requires dynamic, configuration-dependent recalculation of surface charges and is therefore typically approximated by assuming constant net charge on particles. Various computational methods exist that address this. We present an alternative, particularly efficient charge regulation Monte Carlo method (CR-MC), which explicitly models the redistribution of individual charges and accurately samples the correct grand-canonical charge distribution. In addition, we provide an open-source implementation in the LAMMPS molecular dynamics (MD) simulation package, resulting in a hybrid MD/CR-MC simulation method. This implementation is designed to handle a wide range of implicit-solvent systems that model discreet ionizable groups or surface sites. The computational cost of the method scales linearly with the number of ionizable groups, thereby allowing accurate simulations of systems containing thousands of individual ionizable sites. By matter of illustration, we use the CR-MC method to quantify the effects of charge regulation on the nature of the polyelectrolyte coil--globule transition and on the effective interaction between oppositely charged nanoparticles.
177 - K. Bucior , L. Yelash , K. Binder 2008
As a generic model system of an asymmetric binary fluid mixture, hexadecane dissolved in carbon dioxide is considered, using a coarse-grained bead-spring model for the short polymer, and a simple spherical particle with Lennard-Jones interactions for the carbon dioxide molecules. In previous work, it has been shown that this model reproduces the real phase diagram reasonable well, and also the initial stages of spinodal decomposition in the bulk following a sudden expansion of the system could be studied. Using the parallelized simulation package ESPResSo on a multiprocessor supercomputer, phase separation of thin fluid films confined between parallel walls that are repulsive for both types of molecules are simulated in a rather large system (1356 x 1356 x 67.8 A^3, corresponding to about 3.2 million atoms). Following the sudden system expansion, a complicated interplay between phase separation in the directions perpendicular and parallel to the walls is found: in the early stages the hexadecane molecules accumulate mostly in the center of the slit pore, but as the coarsening of the structure in the parallel direction proceeds, the inhomogeneity in the perpendicular direction gets much reduced. Studying then the structure factors and correlation functions at fixed distances from the wall, the densities are essentially not conserved at these distances, and hence the behavior differs strongly from spinodal decomposition in the bulk. Some of the characteristic lengths show a nonmonotonic variation with time, and simple coarsening described by power-law growth is only observed if the domain sizes are much larger than the film thickness.
The Vicsek model (Vicsek et al. 1995) is a very popular minimalist model to study active matter with a number of applications to biological systems at different length scales. With its off-lattice implementation and the periodic boundary conditions, it aims at the analysis of bulk behaviour of a limited number of particles. To expand the applicability of the model to further biological systems, we introduce an on-lattice implementation and analyse its behaviour for three different geometries with reflective boundary conditions. For sufficiently fine lattices, the model behaviour does not differ between off-lattice and on-lattice implementation. The reflective boundary conditions introduce an alignment of the particles with the boundary for low levels of noise. Numerical sensitivity analysis of the swarming behaviour results in a detailed characterisation of the Vicsek model for confined geometries with reflective boundary conditions. In a channel geometry, the boundary alignment causes swarms to move along the channel. In a box, the edges act as swarm traps and the trapping shows a discontinuous noise dependence. In a disk geometry, an ordered rotational state arises. This state is well described by a novel order parameter. These results provide the basis for applications of the Vicsek model to biological questions involving large particle numbers in confined environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا