ﻻ يوجد ملخص باللغة العربية
Nanoparticles in solution acquire charge through dissociation or association of surface groups. Thus, a proper description of their electrostatic interactions requires the use of charge-regulating boundary conditions rather than the commonly employed constant-charge approximation. We implement a hybrid Monte Carlo/Molecular Dynamics scheme that dynamically adjusts the charges of individual surface groups of objects while evolving their trajectories. Charge-regulation effects are shown to qualitatively change self-assembled structures due to global charge redistribution, stabilizing asymmetric constructs. We delineate under which conditions the conventional constant-charge approximation may be employed and clarify the interplay between charge regulation and dielectric polarization.
The net charge of solvated entities, ranging from polyelectrolytes and biomolecules to charged nanoparticles and membranes, depends on the local dissociation equilibrium of individual ionizable groups. Incorporation of this phenomenon, emph{charge re
Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that
We theoretically investigate equilibrium behaviors and photothermal effects of a flexible plasmonic metamaterial composed of aramid nanofibers and gold nanoparticles. The fiber matrix is considered as an external field to reconfigure a nanoparticle a
Controlling the self-assembly of supramolecular structures is vital for living cells, and a central challenge for engineering at the nano- and microscales. Nevertheless, even particles without optimized shapes can robustly form well-defined morpholog
Controlling the topology of structures self-assembled from a set of heterogeneous building blocks is highly desirable for many applications, but is poorly understood theoretically. Here we show that the thermodynamic theory of self-assembly involves